Multiple Regression 2 – Solutions COR1-GB.1305 – Statistics and Data Analysis

Multiple Regression

1. We have a dataset measuring the price (\$), size (ft²), number of bedrooms, and age (years) of 518 houses in Easton, Pennsylvania. We fit a regression model to explain price in terms of the other variables.

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Regression	3	85029785549	28343261850	178.18	0.000
SIZE		53484452975	53484452975	336.24	0.000
BEDROOM	1	156773465	156773465	0.99	0.321
AGE	1	279354141	279354141	1.76	0.186
Error	514	81760176401	159066491		
Lack-of-Fit	509	80933266401	159004453	0.96	0.607
Pure Error	5	826910000	165382000		
Total	517	1.66790E+11			

Model Summary

S	R-sq	R-sq(adj)	R-sq(pred)
12612.2	50.98%	50.69%	50.19%

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	25875	3555	7.28	0.000	
SIZE	39.20	2.14	18.34	0.000	1.71
BEDROOM	-1145	1153	-0.99	0.321	1.71
AGE	-354	267	-1.33	0.186	1.01

Regression Equation

PRICE = 25875 + 39.20 SIZE - 1145 BEDROOM - 354 AGE

(a) Do the signs of the coefficients make sense to you? Explain any apparent contradictions between what you would expect and what the Minitab output indicates.

Solution:

We would expect Price to be positively associated with Size and Bedroom (bigger houses tend to be more expensive), but negatively associated with Age (older houses tend to be cheaper). However, in the multiple regression model with all three variables as predictors, the coefficient of Bedroom is negative. We can explain this apparent contradiction by noting that the regression coefficient measures the change in mean price when Bedroom is increased *and all other predictors are held constant*. If we hold Size constant while increasing Bedroom, then the bedrooms get smaller. (b) What does the result of the t test on the coefficient of Size indicate?

Solution: The coefficient is significant (p < 0.001). Size has the ability to explain Price beyond what is explained by Bedroom and Age.

(c) What does the result of the t test on the coefficient of Bedroom indicate?

Solution: The coefficient is not significant (p = 0.321). Bedroom does not convey additional information in explaining Price Price beyond what is explained by Size and Age.

(d) What does the result of the regression F test indicate?

Solution: The test statistic is significant (p < 0.001). Thus, there is statistically significant evidence that the model is useful in explaining Price.

2. Consider the dataset of 147 movies from 2013. Here is the result of fitting a linear regression model to predict the base-10 logarithm of the total gross (Log10Gross) using Rotten Tomatoes audience and critics scores, along with the base-10 logarithm of the budget (Log10Budget) as predictors:

Analysis of Variance						
Source	DF	Adj SS	Adj MS	F-Value	P-Va	lue
Regression	3	18.8920	6.2973	55.70	0.0	000
Rotten Tomatoes Audience Score	1	3.3973	3.3973	30.05	0.0	000
Rotten Tomatoes Critics Score	1	0.1526	0.1526	1.35	0.3	247
Log10Budget	1	9.5855	9.5855	84.78	0.0	000
Error	143	16.1676	0.1131			
Total	146	35.0595				
Model Summary S R-sq R-sq(adj) R-sq(pred)						
0.336244 53.89% 52.92%	51.28%	0				
Coefficients						
Term	Coe	ef SE Co	ef T-Va	lue P-Va	lue	VIF
Constant	3.17	75 0.3 ^s	97 8	.00 0.	000	
Rotten Tomatoes Audience Score	0.0138	38 0.002	53 5	.48 0.	000	2.53
Rotten Tomatoes Critics Score -	0.0019	0.001	64 -1	.16 0.	247	2.50
Log10Budget	0.493	34 0.05	36 9	.21 0.	000	1.07

Regression Equation

Log10Gross = 3.175 + 0.01388 Rotten Tomatoes Audience Score - 0.00191 Rotten Tomatoes Critics Score + 0.4934 Log10Budget

(a) Based on the ANOVA F test, is there evidence that the model is useful?

Solution: The *p*-value for this test (reported in the first line of the "Analysis of Variance" table is reported as p = 0.000; there is very strong evidence that at least one of the true regression coefficients is nonzero. Thus, there is very strong evidence that the model is useful.

(b) What is the interpretation of the R^2 ?

Solution: The regression model explains 53.89% of the variability in Log10Gross.

(c) In the fitted model, what is the interpretation of s?

Solution: s = 0.336244 is the standard deviation of the error; based on the empirical rule, 95% of the Log10Gross values will be within 2(0.336244) = 0.672488 of their predicted (expected) value. (Note: $10^{0.67} = 4.7$; thus, 95% of the Gross values will be within a factor of 4.7 of their predicted value.)

(d) In the fitted model, what is the interpretation of the coefficient of "Rotten Tomatoes Audience Score"?

Solution: If we increase "Rotten Tomatoes Audience Score" by 1 unit while holding "Rotten Tomatoes Critics Score" and Log10Budget fixed, the expected value of Log10Gross increases by 0.01388 units. (Since $10^{0.013888} \approx 1.02$, the predicted value for Gross increases by 2%.)

(e) Based on the coefficient t tests, which predictor(s) would you remove from the model? What is the interpretation of the p-value for this predictor?

Solution: I would remove "Rotten Tomatoes Critics Score". The *p*-value for this predictor is p = 0.247; if this predictor were not useful after adjusting for "Rotten Tomatoes Audience Score" and Log10Budget, then there would be a 24.7% chance of seeing data like we observed.

Extreme Points

3. Each of the following scatterplots show two regression lines: the solid line is fitted to all of the points, and the dashed line is fitted to just the hollow points.

(a) For each of the three cases, when the solid point is added to the dataset, is its residual from the least squares line large or small?

Solution: (a) large; (b) small; (c) small

(b) Is the x value of the solid point close to \bar{x} or far away from \bar{x} ?

Solution: (a) close to \bar{x} ; (b) far from \bar{x} ; (c) far from \bar{x} .

(c) What affect does adding the solid point have on $\hat{\beta}_0$, $\hat{\beta}_1$, and R^2 ?

Solution: (a) Adding the point has very little affect on $\hat{\beta}_1$, but it changes $\hat{\beta}_0$ slightly and drastically reduces R^2 .

(b) Adding the point has very little affect on $\hat{\beta}_0$, $\hat{\beta}_1$ and R^2 . This is because the point is consistent with the trend of the other points.

(c) Adding the point has a huge affect on $\hat{\beta}_0$, $\hat{\beta}_1$ and R^2 . This is because the point has high influence and it is not consistent with the trend of the other points.

(d) Should we include the solid point in the regression analysis? If not, what should we do with it?

Solution: (a) Since the point has a big influence on the regression fit, we should not include it in the fit. We should discuss the point separately. We should *not* just delete the point from the dataset.

(b) Since the point doesn't have much influence on the regression, we should include it in the analysis.

(c) Since the point has a high influence on the regression, we should not include it in the analysis. We should discuss the point separately.

Outliers, leverage, and influence

4. The following tables gives the observation number (i), the standardized residual (r_i) , the leverage (h_i) , and Cook's distance (C_i) for each data point. The solid point is observation 8.

In each of the three cases are any of the standardized residual, leverage, or Cook's distance large for observation 8? What counts as "large" for these diagnostics?

Solution: (a) The standardized residual (2.32) is large; Cook's distance (0.4) is moderate. We say that the standardized residual is large if $|r_i| > 2$; the leverage is large if $h_i > \frac{2}{n}$; Cook's distance is large if $C_i > 1$. For this problem, n = 8, so $\frac{2}{n} = .25$ and $\frac{4}{n} = .5$.

(b) Only the leverage (0.79) is large.

(c) Both the leverage (0.79) and Cook's distance (8.892) are large.