Regression Inference and Forecasting COR1-GB.1305 – Statistics and Data Analysis

Inference

1. Here are the least squares estimates from the fitting the model

$$Price = \beta_0 + \beta_1 Size + \varepsilon_1$$

for n = 18 apartments in Greenwich Village. Price is measured in units of \$1000 and size is measured in units of 100 ft².

Model Summary

S R-sq R-sq(adj) R-sq(pred) 101.375 86.87% 86.05% 81.13%

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	182.3	62.4	2.92	0.010	
Size(100sqft)	44.95	4.37	10.29	0.000	1.00

Regression Equation

Price(\$1000) = 182.3 + 44.95 Size(100sqft)

- (a) Construct a 95% confidence interval for β_1 .
- (b) What is the meaning of the confidence interval for β_1 ?
- (c) What is the meaning of a 95% confidence interval for β_0 ? In the context of the housing data, is this useful?
- (d) Perform a hypothesis test at level 5% of whether or not the is a linear relationship between Size and mean Price.

2. 54 students reported their interest levels in the course (1–10) and number of times they go out to dinner in a typical month. We will use this data to examine the relationship between these two variables. We fit the model

Interest =
$$\beta_0 + \beta_1 \text{Dinners} + \varepsilon$$

using least-squares. The scatterplot at Minitab regression output follow.

Model Summary

S	R-sq	R-sq(adj)	R-sq(pred)
1.70061	5.85%	4.07%	0.00%

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	8.060	0.527	15.31	0.000	
dinners	-0.1193	0.0658	-1.81	0.075	1.00

Regression Equation

interest = 8.060 -0.1193 dinners

- (a) Quantify the relationship between Interest and Dinners using a 95% confidence interval. (You will need the value $t_{.025,52} \approx 2.009$.)
- (b) Perform a hypothesis test to determine if there is a significant linear relationship between Interest and Dinners.

Forecasting

3. We used the regression model fit to the housing data to predict price at size 2000 ft^2 :

Regression Equation

Price(\$1000) = 182.3 + 44.95 Size(100sqft)

Variable Setting Size(100sqft) 20

FitSE Fit95% CI95% PI1081.2738.1287(1000.44, 1162.10)(851.667, 1310.88)

(a) Find a 95% confidence interval for the mean price of all apartments with size 2000 ft².

(b) Find a 95% prediction interval for the price of a particular apartments with size 2000 ft².

(c) Make a statement about the prices of 95% of all apartments with size 2000 ft².

(d) What is the difference between the confidence interval and the prediction interval?

4. We fit a regression model to the 294 restaurants from the 2003 Zagat data. Our predictor variable is food quality (1–30), and our response variable is price (\$). Here is the result of using the fitted model to predict the price when the food quality is 25.

Model Summary R-sq(adj) R-sq(pred) S R-sq 12.5559 27.93% 27.68% 26.86% Coefficients SE Coef T-Value P-Value Term Coef VIF Constant -4.743.95 -1.200.232 0.200 10.64 Food 2.129 0.000 1.00 Regression Equation Price = -4.74 + 2.129 Food Variable Setting Food 25 Fit SE Fit 95% CI 95% PI 48.4832 1.33906 (45.8478, 51.1187) (23.6315, 73.3349)

(a) What is the interpretation of the 95% confidence interval?

(b) What is the interpretation of the 95% prediction interval?

(c) Explain how the confidence interval is related to Fit, SE Fit, and S.

(d) Explain how the prediction interval is related to Fit, SE Fit, and S.