Introduction to R
Patrick O. Perry

Reading Data into R

Preparing Data

Believe it or not, reading in data is often the hardest part of working with R. If you collect and store your
data in Excel or Google Docs, you will need to carefully format your spreadsheet. It should obey the following
rules:

1. The spreadsheet should contain a single sheet.

2. Row 1 should contain variable names in consecutive cells, starting with Cell Al. For convenience, the
names should be comprised of lowercase words and contain no symbols or punctuation.

3. Subsequent rows (starting with Row 2) should contain your observations (data).

4. If the value of a variable is missing for a particular observation, the coressponding cell in the spreadsheet
should be empty.

5. All other cells in the spreadsheet should be empty.

This sounds straightforward, but many spreadsheets that you find “in the wild” do not obey these rules. You
will have to reformat these spreadsheets, usually by deleting empty rows and columns and by deleting notes
and other annotations.

Even if your spreadsheet is formatted as above, R cannot open Excel files. To save your data to an R-
compatible file format, exportyour data as a “Column-Separated Value” (CSV) file. You can do this from the
File menu in Excel.

Reading CSV Files

If you have a property-formatted CSV file, you can read it into R using the read.csv function. There are
two ways to specify the file. To use your system’s file chooser, run the command.

data <- read.csv(file.choose())

Alternatively, if you know the name of the file, you can pass it directly to the read.csv function. Note
that if you pass the file name directly, you must either specify the full path to the file, or you must set the
“working directory” to be the directory thatcontains the file. To set the working directory, either use the
setwd function or run the Set Working Directory command from RStudio’s Session menu.

Suppose that I want to open a file named “bikedata.csv”, which is stored in the “~/Datasets” directory on
my system. I first set the working directory to “~/Datasets” by Choosing Session > Set Working Directory
> Choose Directory This will execute the command

setwd("~/Datasets")

(In fact, if I do not want to use the menu system, then I can just type this command directly to achieve the
same effect.) Once the working directory is set, I can read in the data to a variable named data by executing
the command

bikedata <- read.csv("bikedata.csv")

One nice feature of the read.csv function is that it correctly web addresses. For example to read the file
“bikedata.csv” from the course website, you can run the command

bikedata <- read.csv("http://ptrckprry.com/course/forecasting/data/bikedata.csv")

This downloads the file and reads the data into the bikedata variable.

Basic Types and Operations

Variables

In R, we use the term “variable” to refer to a name-value pair. You should not confuse this concept with the
types of variables you have seen in your math classes (they are similar in some ways, but different in others).

In the last section, when we ran the command data <- read.csv(file.choose()) we created a variable
with name data and value equal to the contents of the chosen file.

To create a variable or to assign a new value to an existing variable, use the assignment command (<-), which
is meant to look like an arrow pointing from the value to the variable name. For example, the command

a <- 2.7

means “assign the value 2.7 to the variable named a”. Another way to read this is “variable a gets the value
2.7"

When you have a variable, you can use the name in place of the value:

a + 10

[1] 12.7
5 % a
[1] 13.5

You can see the value of a variable, by typing its name and pressing enter:

a

[1] 2.7

An alternative way to read in a file to the variable named data is to run the following sequence of commands:

filename <- file.choose()
data <- read.csv(filename)

The first command asks the user to choose a file, and stores the resulting name in the filename variable.
This variable contains the name of the file, but not the actual contents. The second command takes the name
of the file, opens it, reads the contents into memory, and stores the result in the data variable.

Functions

Besides variables, the other main concept you need to learn in R is that of a function. You are probably
familiar with the concept of a function from your mathematics courses, and a function in R is very similar: a
function is something that takes zero or more values, then performs a sequence of actions and returns a result.

We have already seen three functions: file.choose, read.csv, and setwd. We call a function by putting a
pair of parentheses () after the function name. Many functions, including read.csv and setwd require one
or more values as input. We refer to these values as arguments, and we specify them by putting the values
inside the parentheses. When we do so, we say that we are passing the value of the argument to the function.

Sometimes a function will have optional arguments. These are arguments that, if left unspecified, will be given
reasonable default values. For example, by default, the file.choose function forces the user to choose an
existing file. To allow the user to choose a name for new file, pass the argument new=TRUE to file file.choose
function:

file.choose (new=TRUE)

Before, we did not specify the new argument, and it defaulted to the value FALSE.

Data Frames

The read.csv command opens the file and reads the data into a type of object called a “dataframe”.
Conceptually, a data frame is just like a spreadsheet: it has columns, corresponding to variables, and rows,
corresponding to observations. Each row and column has a name. Usually, the row names are the character
strings “17, “2”, etc., but this is not always the case.

To see the first 6 rows in the bikedata data frame, run the command

head(bikedata)

vehicle colour passing.distance street helmet kerb datetime
1 Car Blue 2.114 Urban N 0.5 2006-05-11 16:30:00
2 HGV Red 0.998 Urban N 0.5 2006-05-11 16:30:00
3 LGV Blue 1.817 Urban N 0.5 2006-05-11 16:30:00
4 Car <NA> 1.640 Urban N 0.5 2006-05-11 16:30:00
5 Bus Other 1.544 TUrban N 0.5 2006-05-11 16:30:00
6 Car Grey 1.509 TUrban N 0.5 2006-05-11 16:30:00
bikelane city

##H 1 N Salisbury

2 N Salisbury

3 N Salisbury

4 N Salisbury

5 N Salisbury

6 N Salisbury

We can see that there are nine columns, named vehicle, colour, passing.distance, street, helmet, kerb,
datetime, bikelane, and city.

To see a summary of the entire data frame, use the summary function:

summary (bikedata)

wvehicle colour passing.distance street helmet

Bus : 46 Blue :636 Min. :0.394 Main 11637 N:1206
Car :1708 Grey :531 1st Qu.:1.303 OneWay1l : 9 Y:1149
HGV : 82 Red :378 Median :1.529 OneWay2 13

LGV : 293 White :333 Mean :1.564 Residential: 39

PTW : 34 Black :262 3rd Qu.:1.790 Rural : 2

SUV : 143 (Other):201 Max. :3.787 Urban : 655

Taxi: 49 NA's : 14

kerb datetime bikelane city

Min. :0.2500 2006-05-20 16:21:00: 93 N:2305 Bristol : 450
1st Qu.:0.2500 2006-05-20 15:48:00: 75 Y: 50 Salisbury:1905
Median :0.5000 2006-05-31 09:04:00: 70

Mean :0.6702 2006-05-20 15:34:00: 65

3rd Qu.:1.0000 2006-05-27 10:01:00: 64

Max. :1.2500 2006-05-27 09:25:00: 63

#i#t (Other) 11925

Extracting Columns

Let’s say we want to investigate the passing.distance variable. To do this, we must first extract that
column from the bikedata dataframe. There are three ways to do this:

x <- bikedata$passing.distance

x <- bikedata[["passing.distance"]]
X <- bikedatal,"passing.distance"]

All three commands are equivalent ways to extract the passing.distance column and store it in a variable
named x. The $ form is the most common, but you will sometimes see the other two forms, as well.

Vectors

Data frame columns are stored in a data type called a “vector”. Conceptually, a vector is a one-dimensional
array of values, indexed by integers starting at 1. Most functions in R operate on vectors.

You can access individual values by using double square-brackets. For example, to see the first element of the
vector, type the command

x[[1]1]

[1] 2.114

To see the fifth value, type the command

x[[5]]

[1] 1.544

To see how many elements are contained in the vector, use the length function:

length(x)

[1] 2355

To see the last element, type

x[[length(x)]]

[1] 1.031

To extract a subvector, use single square brackets. For example, the subvector consisting of the first 25
elements is

x[1:25]

[1] 2.114 0.998 1.817 1.640 1.544 1.509 1.290 1.512 1.049 1.932 1.145
[12] 1.410 1.428 1.494 1.570 2.103 0.896 1.160 1.290 1.963 2.436 2.304
[23] 1.482 1.492 1.432

Here, 1:25 is shorthand for “integers 1 to 25”. Since not all 25 values fit onto a single line, R wraps the
values. At the start of each line, R prints the index of the first value on the line in square brackets. Looking
at the output above, we can see that 1.410 is the 12th element and 1.492 is the 24th element of the result.

You may have asked yourself earlier why the output of x[[1]] and other similar commands was prefixed by
[1]. The reason for this is that R doesn’t have the concept of a “single value” or “scalar”. The only way to
represent the value of x[[1]] is as a length-one vector. The output

denotes a vector with a single value (2.114), stored at index 1.

Since there is no concept of a “scalar” in R, the command x[[1]] is equivalent to x[1:1], which is also the
same as x[1]. In other programming languages, x[[1]], “the first element of x”, and x[1], “the subvector
of x starting and ending at index 1” would be different; in R, these are identical. Because of this, most
people use single brackets instead of double brackets when indexing vectors, writing x[1] and x[5] instead
of x[[1]] and x[[5]1]].

Plots and Descriptive Statistics
Descriptive Statistics for Numeric Variables
There are a variety of functions for computing descriptive statistics for the values stored in a vector.

e Sum of values:

sum(x)

[1] 3683.013

o Measures of central tendency (sample mean and median):

mean (x)

[1] 1.563912

median(x)

[1] 1.529

o Measures of variability (sample standard deviation and sample variance):

sd(x)

[1] 0.3834545

var (x)

[1] 0.1470373
o Extreme values (minimum and maximum):
min(x)
[1] 0.394
max (x)
[1] 3.787
e Quantiles:

quantile(x, .25) # first quartile

25%
1.303

quantile(x, .75) # third quartile

75%
1.7905

quantile(x, .99) # 99th percentile

#it 99%
2.58006

Plots for Numeric Variables

We can use the hist command to make a histogram of the values stored in a vector:

hist(x)

Histogram of x

Frequency

100 200 300 400 500
I

— —

I I I I I I I
0.5 1.0 15 2.0 2.5 3.0 3.5

0
I

X

By default, the output looks fine when printed in black and white, but it isn’t very pretty. We can specify
the bin color, change the axis labels, and omit the main title by passing additional arguments to this hist
function

hist(x, col="steelblue", xlab="Passing Distance", ylab="Count",
main:u n)

Count
100 200 300 400 500
|

0
I

I I I I I I I
0.5 1.0 1.5 2.0 2.5 3.0 3.5

Passing Distance

Use the boxplot and ggqnorm commands to make boxplots and normal probability plots, as in the following
examples:

boxplot(x, border="darkred", ylab="Passing Distance")

O
0 8
B 8
S
& w _
% o .
a .
o — \
£ .
B v _|
© —
o ;
v _|
S 8

qgnorm(x, col="darkgreen", xlab="Normal Quantiles",
ylab="Passing Distance Quantiles",

main="")
o

0 _ Role
E ™
= |
@
S
o v |
o
(&)
C
9 —]
9
8w |
g —
0
N]
G
o

o _

o o

I I I I I I I
-3 -2 -1 0 1 2 3
Normal Quantiles

Scatterplots

We can make a scatter plot using the plot command. For example, to plot passing distance versus distance
to the kerb, run the command

plot(bikedata$kerb, bikedata$passing.distance,
xlab="Distance to Kerb",
ylab="Passing Distance")

o
7o :
O o
o 1 9
8 :
S o | B
) H
- |
£
o
) v _|
S
o
v _|
o

I I I I I
0.4 0.6 0.8 1.0 1.2

Distance to Kerb

To connect the points with lines, use the type="1" argument. For example

t <- 1:10
plot(t, t72, type="1")

100
I

t"h2
40 60

20

t

We can use the 1ty and col arguments to change the style and color of the line:

t <- 1:10
plot(t, t~2, type="1", lty=2, col="green")

100
I

"2
60

40

20

Categorical Variables

So far, we have seen how to use R to summarize and plot a numeric (quantitative) variable. R also has very
good support for categorical (qualitative) variables, referred to as factors.

To see levels, the set of possible values for a factor variable, use the levels function. For example, to see the
levels of the colour variable:

levels(bikedata$colour)
[1] "Black" "Blue" "Green" "Grey" "Other" "Red" "White"
To tabulate the values of the variable, use the table command, as in

table (bikedata$colour)

##
Black Blue Green Grey Other Red White
262 636 149 531 52 378 333

Note: be default, the table command omits missing values. To include these values in the output, include
useNA="ifany" in the call to table:

table(bikedata$colour, useNA="ifany")

10

#i#
Black Blue Green Grey Other Red White <NA>
262 636 149 531 52 378 333 14

We can present tabulated counts in a bar plot using the following commands

tab <- table(bikedata$colour, useNA="ifany")
barplot (tab)

500
I

300
I

100
I

o - [1] —

Black Blue Green Grey Other Red White

Usually, it makes sense to arrange the table values in decreasing order. Here is an example with sorted counts
that adds axis labels and changes the bar colors:

barplot(sort(tab, decreasing=TRUE), xlab="Colour", ylab="Count",
col="steelblue")

o - IIIII.-_

Blue Grey Red White Black Green Other

Count
300 500
| |

100
I

Colour

11

Inference

Inference for a Population Mean
We can use the t.test function to test a hypothesis about a population mean.

t.test(bikedata$passing.distance)

##

One Sample t-test

#it

data: bikedata$passing.distance

t = 197.922, df = 2354, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to O
95 percent confidence interval:

1.548417 1.579407

sample estimates:

mean of x

1.563912

This reports the t statistic, the degrees of freedom, the p-value, and the sample mean. The command
also reports a 95% confidence interval for the population mean. To change the confidence level, use the
conf.level argument, as in

t.test(bikedata$passing.distance, conf.level=0.99)

##

One Sample t-test

##

data: Dbikedata$passing.distance

t = 197.922, df = 2354, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to O
99 percent confidence interval:

1.543542 1.584282

sample estimates:

mean of x

1.563912

By default, the null hypothesis is that the true (population) mean is equal to 0, and the alternative hypothesis
is that the true mean is not equal to 0. To use a different null, pass the mu argument. To use a different
alternative, pass alternative="less" or alternative="greater". For example, to test the null hypothesis
that the true mean is equal to 1.5 against the alternative that it is greater, run the command

t.test(bikedata$passing.distance, alternative="greater", mu=1.5)

##
One Sample t-test
##

12

data: bikedata$passing.distance

t = 8.0884, df = 2354, p-value = 4.786e-16

alternative hypothesis: true mean is greater than 1.5
95 percent confidence interval:

1.55091 Inf

sample estimates:

mean of x

1.563912

Note that for a one-sided alternative, the confidence interval is one-sided, as well.

Inference for a Population Proportion

To perform a test on a population proportion, use the prop.test function. This performs a test on a
population proportion that is slightly different than the one we cover in the core statistics course, but it will
give you a very similar answer.

In the first argument, specify x, the number of successes; in the second argument, specify n, the number of
trials. By default, the null value of the population proportion is 0.5; to specify a different value, use the p
argument.

For example, to test the null hypothesis that the true proportion of cars passing the rider on his route is
exactly equal to 40%, we first tabulate the colour variable,

table (bikedata$colour)

##
Black Blue Green Grey Other Red White
262 636 149 531 52 378 333

In this instance, the number of “successes” is equal to the number of blue cars, 636. Recall that some of the
values for the colour variable are missing. If the missingness is unrelated to the actual color, then we can
safely ifnore these values; in this case, the number of “trials” is equal to the sumof the counts for all of the
non-missing values.

sum(table(bikedata$colour))

[1] 2341

Now, to test the proportion, we run the command:

prop.test(636, 2341, p=0.40)

#i#t

1-sample proportions test with continuity correction
##

data: 636 out of 2341, null probability 0.4

X-squared = 160.0812, df = 1, p-value < 2.2e-16

alternative hypothesis: true p is not equal to 0.4
95 percent confidence interval:

0.2538356 0.2902788

sample estimates:

P

0.2716788

13

As with the t.test function, we can use a one-sided alternative or specify a different confidence level for the
interval by using the alternative or conf.level argument, respectively. Here is a test of the null that the
true proportion is equal to 0.5 against the alternative that it is less, along with a one-sided 99% confidence
interval:

prop.test (636, 2341, p=0.50, alternative="less", conf.level=0.99)

#it

1-sample proportions test with continuity correction
##

data: 636 out of 2341, null probability 0.5

X-squared = 487.2379, df = 1, p-value < 2.2e-16
alternative hypothesis: true p is less than 0.5
99 percent confidence interval:

0.0000000 0.2937932

sample estimates:

P

0.2716788

Linear Regression

Model Fitting

We fit a linear regression model using the 1m command. For example, suppose we want to fit a with response
variable sqrt (passing.distance) and predictors helmet, vehicle, and kerb. We would use the following
command:

model <- 1lm(sqrt(passing.distance) ~ helmet + vehicle + kerb,
data = bikedata)

The formula syntax y ~ x1 + x2 + x3 means use y as the response variable, use x1, x2, and x3 as predictor
variables, and include an intercept in the model. We can either store all of the variables in a data frame
and use the data argument as above, or we can extract the variable first. For example, we could run the
following commands to fit an equivalent model:

sqrt.passing.distance <- sqrt(bikedata$passing.distance)
helmet <- bikedata$helmet

vehicle <- bikedata$vehicle

kerb <- bikedata$kerb

modell <- 1m(sqrt.passing.distance ~ helmet + vehicle + kerb)

In the latter instance, there is no need to pass the data argument to 1lm; the response and the predictor
variables exist in the environment.

Inference for Regression Parameters

When we have a fitted value, we can get the coefficient estimates, their standard errors, t statistics, and p
values with the summary command.

14

summary (model)

##

Call:

lm(formula = sqrt(passing.distance) ~ helmet + vehicle + kerb,
#it data = bikedata)

##

Residuals:

Min 1Q Median 3Q Max

-0.67612 -0.09319 -0.00633 0.08825 0.74546

##

Coefficients:

#it Estimate Std. Error t value Pr(>[t])

(Intercept) 1.217566 0.022035 55.255 < 2e-16 *x*x

helmetY -0.022548 0.006028 -3.741 0.000188 **x*

vehicleCar 0.112074 0.021642 5.179 2.43e-07 ***

vehicleHGV 0.048953 0.026739 1.831 0.067261 .

vehicleLGV 0.091336 0.022986 3.973 7.30e-05 *x*x

vehiclePTW 0.097733 0.032753 2.984 0.002875 **

vehicleSUV 0.111934 0.024561 4.557 5.45e-06 *x**

vehicleTaxi 0.068841 0.029768 2.313 0.020833 *

kerb -0.103258 0.008497 -12.152 < 2e-16 **x*

##H -—-

Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

Residual standard error: 0.1448 on 2346 degrees of freedom

Multiple R-squared: 0.09062, Adjusted R-squared: 0.08752

F-statistic: 29.22 on 8 and 2346 DF, p-value: < 2.2e-16

This also reports some information about the residuals, along with the R"2 and the adjusted R"2 values.

To get a confidence interval for a population regression coefficient, use the confint command. For example,
we can get a 99% confidence interval for coefficient of helmetY with

confint (model, "helmetY", 0.99)

#i# 0.5 % 99.5 %
helmetY -0.0380878 -0.007008733

Regression Diagnostics
Plotting a fitted model shows us regression diagnostics:

plot(model)

15

Residuals

Standardized residuals

0.5

0.0

-0.5

Residuals vs Fitted

01059

I I I I I
1.10 1.15 1.20 1.25 1.30

Fitted values
Im(sgrt(passing.distance) ~ helmet + vehicle + kerb)
Normal Q-Q

Theoretical Quantiles
Im(sqgrt(passing.distance) ~ helmet + vehicle + kerb)

16

Scale-Location

01059
9880
o o o 18680 o
o o o
T o o’o °
3 0 =S Q
g 9- 0
: : z
9 8 ©o
N o ©)
N | o S
g ;3
E oo o ¥ 0§ g
% (@) o) o ©O (@]
O % ocp %
o | o)
© | | | | |
1.10 1.15 1.20 1.25 1.30
Fitted values
Im(sgrt(passing.distance) ~ helmet + vehicle + kerb)
Residuals vs Leverage
@ p—

Standardized residuals
0
|

I I I I I I I
0.000 0.005 0.010 0.015 0.020 0.025 0.030

Leverage
Im(sqgrt(passing.distance) ~ helmet + vehicle + kerb)

We can extract the raw or standardized residuals with the residuals or rstandard command. For example,
to make scatter plots of residuals versus kerb, use

17

plot(bikedata$kerb, residuals(model))

O
© -
T .
AN
2
@ _|
S
=}
ho] AN
o ' :
© 8
O‘ —]
| (0]
[[[[[
0.4 0.6 0.8 1.0 1.2
bikedata$kerb

standardized residuals, use

plot(bikedata$kerb, rstandard(model))

<t —
T -
(@)
£
o
g © 7
©
C
8
N
S
o)
I I I I
0.4 0.6 0.8 1.0
bikedata$kerb

Here is a boxplots of standardized residual versus helmet:

boxplot(rstandard(model) ~ bikedata$helmet)

18

1.2

For

O
< - o o
AN — X !
O —
~ ! :
| ! gi'
<F] g O
O
I I
N Y
Forecasting

We use the predict command to forecast the response values for new observations. To use this command,
we first make a data frame with the predictors for the new observations, then we pass this data frame and
the model to the predict command.

Suppose we want to get a prediction sqrt(passing.distance) when riding with a helmet, being passed by
an SUV, and having a kerb distance of 1.2 meters. In this case, we run the commands

newdata <- data.frame(helmet="Y", vehicle="SUV", kerb=1.2)
predict(model, newdata)

#i# 1
1.183032

We can also ask for the standard error of the fit:

predict(model, newdata, se.fit = TRUE)

$fit

1

1.183032

##

$se.fit

[1] 0.0130666
##

$df

[1] 2346

##

$residual.scale
[1] 0.1448078

We can get a 95% confidence interval for the mean with

19

predict(model, newdata, interval = "confidence", level = 0.95)

fit lwr upr
1 1.183032 1.157409 1.208656

Here, the reported confidence interval is approximately (1.157, 1.209).

Finally, we can get a prediction interval for the response with

predict(model, newdata, interval = "prediction", level = 0.95)

fit lwr upr
1 1.183032 0.897914 1.468151

Here, the reported prediction interval is approximately (0.897, 1.469).

20

	Reading Data into R
	Preparing Data
	Reading CSV Files

	Basic Types and Operations
	Variables
	Functions
	Data Frames
	Extracting Columns
	Vectors

	Plots and Descriptive Statistics
	Descriptive Statistics for Numeric Variables
	Plots for Numeric Variables
	Scatterplots
	Categorical Variables

	Inference
	Inference for a Population Mean
	Inference for a Population Proportion

	Linear Regression
	Model Fitting
	Inference for Regression Parameters
	Regression Diagnostics
	Forecasting

