
Introduction to Linear Regression – Solutions
COR1-GB.1305 – Statistics and Data Analysis

Linear Regression

1. In the following scenarios, which would you consider to be predictor (x) and which would you
consider to be response (y)?

(a) Sales revenue; Advertising expenditures

(b) Starting salary after college; Undergraduate GPA

(c) The current month’s sales; the previous month’s sales

(d) The size of an apartment; the sale price of an apartment.

(e) A restaurant’s Zagat Price rating; a restaurant’s Zagat Food rating.

Solution: This is a little bit subjective, but the following answers make sense: (a) y =
sales revenue; (b) y = starting salary; (c) y = current sales; (d) y = sale price; (e) either
makes sense.

2. Let y be the payment (in dollars) for a repair which takes x hours. Suppose that

y = 25 + 30x.

What is the interpretation of this model?

Solution: There is a positive linear relationship between y and x. Increasing repair time
by one hour increases payment by $30. There is no interpretation for the intercept since
repair time is always positive.

3. Consider two variables measured on 294 restaurants in the 2003 Zagat guide:

y = typical dinner price, including one drink and tip ($)

x = Zagat quality rating (0–30).

Here is a scatterplot of y on x:

Why is an exact linear relationship inappropriate to describe the relationship between y and x?

Solution: There are no values β0 and β1 such that y = β0 + β1x for all restaurants; no
straight line fits the data perfectly.
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4. Here is the least squares regression fit to the Zagat restaurant data:
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Here is the Minitab output from the fit:

Model Summary

S R-sq R-sq(adj) R-sq(pred)

12.5559 27.93% 27.68% 26.86%

Coefficients

Term Coef SE Coef T-Value P-Value VIF

Constant -4.74 3.95 -1.20 0.232
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Food 2.129 0.200 10.64 0.000 1.00

Regression Equation

Price = -4.74 + 2.129 Food

(a) What are the estimated intercept and slope?

Solution: The estimated intercept is β̂0 = −4.74; the estimated slope is β̂1 = 2.129.

(b) Use the estimated regression model to estimate the average dinner price of all restaurants
with a quality rating of 20.

Solution: If Food = 20, then estimated expected price per meal ($) is P̂rice = −4.74+
2.129(20) = 37.84.
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(c) In the estimated regression model, what is the interpretation of the slope?

Solution: For every 1-point increase in food quality, the expected dinner price goes
up by $2.129.

(d) In the estimated regression model, why doesn’t the intercept have a direct interpretation?

Solution: This would be the expected dinner price for a restaurant with a quality of
0. No such restaurant exists (this is outside the range of the data).

5. Refer to the Minitab output from the previous problem, the regression analysis of the Zagat
data.

(a) What is the estimated standard deviation or the error (the “standard error of the regres-
sion”)? What is the interpretation of this value?

Solution: The estimated error standard deviation is s = 12.5559. Using the empirical
rule, the model says that approximately 95% of restaurants have prices within 2s =
25.11 of the regression line.

(b) According to the estimated regression model, what is the range of typical prices for restau-
rants with quality ratings of 20?

Solution: 37.84± 25.11 = (12.73, 62.95)

(c) According to the estimated regression model, what is the range of typical prices for restau-
rants with quality ratings of 10?

Solution: In the estimated regression model, when the quality rating is 10, the ex-
pected price is −4.74+2.129(10) = 16.55; the range of typical prices is 16.55±25.11 =
(−8.5441.66). Since price can’t be negative, we could just as well report the range as
(0, 41.66). Note that since x = 10 is at the edge of the range of the data, the values
predicted by the model are not very reliable.
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The Analysis of Variance Table

6. When we fit the regression model to the Zagat data with response “Price” and predictor “Food”,
we get the following “Analysis of Variance” table:

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value

Regression 1 17838 17838.4 113.15 0.000

Food 1 17838 17838.4 113.15 0.000

Error 292 46034 157.7

Lack-of-Fit 18 5394 299.7 2.02 0.009

Pure Error 274 40640 148.3

Total 293 63873

(a) Find the SSE. Explain how this value is computed.

Solution: We read the sum of squares of the residual errors, SSE, from the Adj SS

column of the Error row: 46034. This quantity is equal to the sum of squares of the
residual errors:

∑n
i=1(yi − ŷi)2.

(b) Find the SSR. Explain how this value is computed.

Solution: We read the sum of squares of the regression, SSR, from the Adj SS column
of the Regression row: 17838. This quantity is equal to

∑n
i=1(ŷi − ȳ)2, where ȳ is

the average value of yi, i.e. ȳ = 1
n

∑n
i=1 yi.

(c) Find the SST. Explain how this value is computed.

Solution: We read the total sum of squares, SST, from the Adj SS column of the
Total row: 63873. This quantity is equal to

∑n
i=1(yi − ȳ)2. Note also that SST =

SSR + SST.

(d) Explain how to compute R2 from the ANOVA table.

Solution: The coefficient of determination, R2, is equal to the proportion of the
variability in the response that is explained by the regression:

R2 =
SSR

SST
.

(e) Explain how to compute s from the ANOVA table.
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Solution: The standard error of the regression is given by

s =

√
SSE

n− k
,

where k is the number of predictors in the model (k = 1 for simple linear regression.
This is also equal to

√
MSE, where MSE is given in the Adj MS column of the Error

row. This is an estimate of the standard deviation of the regression error.
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