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Summary. Network data often take the form of repeated interactions between senders and
receivers tabulated over time. A primary question to ask of such data is which traits and
behaviours are predictive of interaction.To answer this question, a model is introduced for treat-
ing directed interactions as a multivariate point process: a Cox multiplicative intensity model
using covariates that depend on the history of the process. Consistency and asymptotic nor-
mality are proved for the resulting partial-likelihood-based estimators under suitable regularity
conditions, and an efficient fitting procedure is described.Multicast interactions—those involving
a single sender but multiple receivers—are treated explicitly.The resulting inferential framework
is then employed to model message sending behaviour in a corporate e-mail network.The anal-
ysis gives a precise quantification of which static shared traits and dynamic network effects are
predictive of message recipient selection.

Keywords: Cox proportional hazards model; Network data analysis; Partial likelihood
inference; Point processes

1. Introduction

Much effort has been devoted to the statistical analysis of network data; see Jackson (2008),
Goldenberg et al. (2009) and Kolaczyk (2009) for recent overviews. Often network observables
comprise counts of interactions between individuals or groups tabulated over time. Communica-
tions networks give rise to directed interactions: phone calls, text messages or e-mails exchanged
between a given set of individuals over a specific time period (Tyler et al., 2005; Eagle and Pent-
land, 2006). Specific examples of repeated interactions from other types of networks include the
following: Fowler’s (2006) study of legislators authoring and cosponsoring bills (a collaboration
network); Mckenzie and Rapoport’s (2007) study of families migrating between communities in
Mexico (a migration network); the study of Sundaresan et al. (2007) of zebras congregating at
locations in their habitat (an animal association network); Papachristos’s (2009) study of gangs
in Chicago murdering members of rival factions (an organized crime network).

In this paper, we consider partial-likelihood-based inference for general directed interaction
data in the presence of covariates. We first develop asymptotic theory for the case in which
interactions are strictly pairwise, and then we generalize our results to the multiple-receiver
(multicast) case; we also provide efficient algorithms for partial likelihood maximization in
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these settings. Our main assumption on the covariates is that they be predictable, which allows
them to vary with time and potentially to depend on the past.

The interaction data that we consider comprise a set of triples, with triple (t,i, j) indicating
that, at time t, directed interaction i→ j took place—for instance, individual i sent a message
to individual j. Given such a set of triples, a primary modelling goal lies in determining which
characteristics and behaviours of the senders and receivers are predictive of interaction. In this
vein, three important questions stand out.

(a) Homophily: is there evidence of homophily (an increased rate of interaction between
similar individuals)? To what degree is a shared attribute predictive of heightened inter-
action?

(b) Network effects: to what extent are past interaction behaviours predictive of future ones?
If we observe interactions i→h and h→j, are we more likely to see the interaction i→j?

(c) Multiplicity: how should multiple-receiver interactions of the type i→{j1, j2, . . . , jL} be
modelled? What are the implications of treating these as L separate pairwise interactions?

The issues of homophily, network effects and their interactions arise frequently in the net-
works literature; see, for example, McPherson et al. (2001), Butts (2008), Aral et al. (2009),
Snijders et al. (2010) and references contained therein. Multiplicity has largely been ignored in
this context, however, with notable exceptions including Lunagómez et al. (2009) for graphical
models, and Shafiei and Chipman (2010) for network modelling.

In the remainder of this paper, we provide a modelling framework and computationally
efficient partial likelihood inference procedures to facilitate analysis of these questions. We
employ a Cox proportional intensity model incorporating both static and history-dependent
covariates to address the first of these two questions, and a parametric bootstrap to address the
third. Section 2 presents our point process model for directed pairwise interactions, along with
the resultant inference procedures. Section 3 establishes consistency and asymptotic normality of
the corresponding maximum partial likelihood estimator, and Section 4 extends our framework
to the case of multiple-receiver interactions. Section 5 employs this framework to model message
sending behaviour in a corporate e-mail network. Section 6 evaluates the strength of homophily
and network effects in explaining these data, and Section 7 concludes the main body of the
paper. Appendices A–C contain respectively implementation details and technical results from
Sections 3 and 4. The on-line supplementary material provides comparative analyses based on
related network models in the literature.

2. A point process model and partial likelihood inference

Every interaction process can be encoded by a multivariate counting measure. For sender i,
receiver j and positive time t, define

Nt.i, j/=#{directed interactions i→ j in time interval [0, t]}:

For technical reasons, assume that N0.i, j/=0 and that Nt.i, j/ is adapted to a stochastic basis
of σ-algebras {Ft}t!0 satisfying the usual conditions. Then, Nt.i, j/ is a local submartingale,
so, by the Doob–Meyer decomposition, there is a predictable increasing process Λt.i, j/, null
at zero, such that Nt.i, j/−Λt.i, j/ is an Ft-local martingale. Under mild conditions—the most
important of which is that no two interactions happen simultaneously—there is a predictable
continuous process λt.i, j/ such that Λt.i, j/=

∫ t
0 λs.i, j/ds: (In practical applications, simulta-

neous events exist and are an annoyance; Efron (1977) handled simultaneity through an ad hoc
adjustment, whereas Broström (2002) added a discrete component to Λ.) The process λ is known
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as the stochastic intensity of N. Heuristically,

λt.i, j/dt =P{interaction i→ j occurs in time interval [t, t +dt/}:

We shall model N through λ by using a version of the Cox (1972) proportional intensity model.
Let I be a set of senders and J be a (not necessarily disjoint) set of receivers. For each sender

i, let λ̄t.i/ be a non-negative predictable process called the baseline intensity of sender i; let Jt.i/
be a predictable finite subset of J called the receiver set of sender i. For each sender–receiver
pair .i, j/, let xt.i, j/ be a predictable locally bounded vector of covariates in Rp. Let β0 be
an unknown vector of coefficients in Rp. For the remainder of this section, assume that each
interaction has a single receiver.

Given a multivariate counting process N on R+ ×I ×J , we model its stochastic intensity as

λt.i, j/= λ̄t.i/ exp{βT
0 xt.i, j/}1{j ∈Jt.i/}: .1/

This model posits that sender i in I interacts with receiver j in Jt.i/ at a baseline rate λ̄t.i/
modulated up or down according to the pair’s covariate vector, xt.i, j/. As Efron (1977) noted,
the specific parametric form for the multiplier exp{βT

0 xt.i, j/} is not central to the theoretical
analysis, but this choice is amenable to computation and gives the parameter vector β0 a straight-
forward interpretation. Butts (2008) and Vu et al. (2011a,b) used variants of this model to analyse
repeated directed actions within social settings.

The form of model (1) is deceptively simple but remains sufficiently flexible to be useful in
practice. The model allows for homophily and group level effects via inclusion of covariates
of the form ‘1{i and j belong to the same group}’, where ‘group’ is some observable trait like
ethnicity, gender or age group. Its real strength, though, is that xt.i, j/ is allowed to be any
predictable process; in particular xt.i, j/ can depend on the history of interactions. To model
reciprocation and transitivity in the interactions (with I =J ), for example, choose appropriate
values for ∆k and include relevant covariates in xt.i, j/:

1{interaction j → i occurred in [t −∆k, t/}

and

1{for some h, interactions i→h and h→ j occurred in [t −∆k, t/}:

Any process that is measurable with respect to the predictable σ-algebra is a valid covariate; this
excludes only covariates depending on the future or the immediate present. In Section 5.2 we
detail specific covariates that are suitable for measuring homophily and network effects.

Also note that, despite presuming I and J to be fixed, our analysis allows senders and
receivers to enter and leave the study during the observation period. The effective number of
senders at time t is the set of i such that λ̄t.i/ %=0, which potentially varies with time. Likewise,
the effective number of receivers is controlled through Jt.i/.

Following Cox (1975), we treat the baseline rate λ̄t.i/ as a nuisance parameter and estimate
the coefficient vector β0 by using a partial likelihood. Specifically, let .t1, i1, j1/, . . . , .tn, in, jn/
be the sequence of observed interactions. The inference procedure is motivated by decomposing
the full likelihood L as

L.t1, i1, j1, t2, i2, j2, . . . , tn, in, jn/=L.t1, i1/L.j1|t1, i1/L.t2, i2|t1, i1, j1/L.j2|t2, i2, t1, i1, j1/

: : : L.tn, in|tn−1, in−1, jn−1, . . . , t1, i1, j1/L.jn|tn, in, tn−1, in−1, . . . , t1, i1, j1/

={L.t1, i1/L.t2, i2|t1, i1, j1/: : : L.tn, in|tn−1, in−1, jn−1, . . . , t1, i1, j1/}
×{L.j1|t1, i1/L.j2|t2, i2, t1, i1, j1/: : : L.jn|tn, in, tn−1, in−1, . . . , t1, i1, j1/};
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the term comprised of the product of conditional likelihoods of j1, . . . , jn is dubbed a partial
likelihood. In continuous time, the log-partial-likelihood at time t, evaluated at β, is

log{PLt.β/}=
∑

tm"t

(
βT xtm.im, jm/− log

[ ∑
j∈Jtm .im/

exp{βT xtm.im, j/}
])

: .2/

In Section 3, we prove under suitable regularity conditions that the maximizer of log{PLt.·/} is
a consistent estimator of β0 as t increases.

The function log{PLt.·/} is concave and so can be maximized via Newton’s method or a
gradient-based optimization approach (Nocedal and Wright, 2006). These methods require one
or both of the first two derivatives of log{PLt.·/}, which can be expressed in terms of weighted
means and covariances of the covariates. The weights are

wt.β, i, j/= exp{βT xt.i, j/}1{j ∈Jt.i/}, .3a/

Wt.β, i/=
∑

j∈Jt .i/

wt.β, i, j/: .3b/

The inner sum in log{PLt.β/} is Wtm.β, im/. The function log{Wt.·, i/} has gradient Et.·, i/ and
Hessian Vt.·, i/, given by

Et.β, i/= 1
Wt.β, i/

∑
j∈Jt .i/

wt.β, i, j/xt.i, j/, .4a/

Vt.β, i/= 1
Wt.β, i/

∑
j∈Jt .i/

wt.β, i, j/.xt.i, j/−Et.β, i//⊗2, .4b/

where a⊗2 =a⊗a=aaT. Consequently, the gradient and negative Hessian of log{PLt.·/} are

Ut.β/=∇[log{PLt.β/}]=
∑

tm"t

xtm.im, jm/−Etm.β, im/, .5a/

It.β/=−∇2[log{PLt.β/}]=
∑

tm"t

Vtm.β, im/: .5b/

We call Ut.β0/ the unnormalized score and It.β0/ the observed information matrix.
Note the dependence of these terms on time varying covariates, which precludes the use of

sufficient statistics and introduces additional complexity in maximizing log{PLt.·/}. For most
large interaction data sets, existing computational routines for handling Cox models (e.g. the
function coxph from the survival package for R (Therneau and Lumley, 2009)) will not
suffice. In Appendix A, we describe a customized method for maximizing log{PLt.·/} that
exploits sparsity in xt.i, j/.

3. Consistency of maximum partial likelihood inference

Under the model of Section 2, the maximum partial likelihood estimator (MPLE) is a natural
estimate of β0; the inverse Hessian of log{PLt.·/} evaluated at the MPLE is a natural estimate
of its covariance matrix. We now give conditions under which these estimators are consistent.

In the sampling regime where observation time t is fixed and the number of senders |I| in-
creases, Andersen and Gill’s (1982) consistency proof for the Cox proportional hazards model in
survival analysis extends to cover model (1). This setting is natural in the context of clinical trial
data, where I corresponds to the set of patients under study, but does not meet the requirements
that are typical of interaction data. For most interaction data we cannot control I and J , and
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the only way to collect more data is to increase the observation time. Cox (1972, 1975) outlined
a proof for general MPLE consistency that applies to our sampling regime, but his argument is
heuristic; Wong’s (1986) treatment is more rigorous but does not cover continuous or time vary-
ing covariates. The general interaction data sampling regime warrants a new consistency proof.

Our proof of consistency relies on rescaling time to make the interaction times uniform.
For this, define marginal processes Nt.i/ = Σj∈J Nt.i, j/ and Nt = Σi∈I Nt.i/; also note that
tn = sup{t : Nt < n} is a stopping time and let Ftn be the σ-algebra of events before tn. The
main idea of the proof is to change time from the original scale to a scale on which tn − tn′ is
proportional to n−n′.

3.1. Assumptions
Let B be a neighbourhood of β0. For a vector a, let ‖a‖ denote its Euclidean norm; for a matrix,
A, let ‖A‖ denote its spectral norm, equal to the largest eigenvalue of .ATA/1=2. We require the
following assumptions.

Assumption 1. The covariates are uniformly square integrable, i.e.

E[sup
t,i,j

‖xt.i, j/‖2]

is bounded.

Assumption 2. The integrated covariance function is well behaved. When β ∈B and α∈ [0, 1],
as n→∞, then with respect to the covariance function Σα.β/ we have that

1
n

∑
i∈I

∫ t+αn,

0
Vs.β, i/Ws.β, i/ λ̄s.i/ds

P→Σα.β/:

Assumption 3. The interaction arrival times are finite. For each n,

P{tn <∞}=1:

Assumption 4. The variance function is equicontinuous. More precisely,

{Vtn.·, i/ : n!1, i∈I}

is an equicontinuous family of functions.

These technical assumptions are similar to those of Andersen and Gill (1982), who investigated
specific settings in which their assumptions hold. Note that, when ‖xt.i, j/‖ is bounded and
assumption 3 is in force, the remaining assumptions follow.

3.2. Main results
Assumptions 1–4 imply that the MPLE is consistent and asymptotically Gaussian, as shown by
the following two theorems.

Theorem 1. Let N be a multivariate counting process with stochastic intensity as given in
equation (1), with true parameter vector β0. Let tn be the sequence of interaction times, and set
Ut.β/ and It.β/ to be the gradient and negative Hessian of the log-partial-likelihood function
as given respectively in equations (5a) and (5b). If assumptions 1 and 2 hold, then, as n→∞,

(a) n−1=2 Ut+αn,.β0/ converges weakly to a Gaussian process on [0, 1] with covariance func-
tion Σα.β0/ and

(b) if assumptions 3 and 4 also hold, then, for any consistent estimator β̂n of β0, we have that
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sup
α∈[0,1]

∥∥∥∥
1
n

It+αn,.β̂n/−Σα.β0/

∥∥∥∥
P→0:

We do not actually require convergence of the whole sample path, but it turns out to be just
as much effort to prove as convergence of the end point. Consistency is a direct consequence of
theorem 1.

Theorem 2. Let N be a multivariate counting process with stochastic intensity as given in
equation (1), with true parameter vector β0. Let the log-partial-likelihood log{PLt.·/} be as
defined in equation (2). Let tn be the sequence of interaction times.

Assume for β in a neighbourhood of β0 that −.1=n/∇2[log{PLtn .β/}]→P Σ1.β/, where
Σ1.·/ is locally Lipschitz and with smallest eigenvalue bounded away from zero. If β̂n max-
imizes log{PLtn .·/} and conclusion (a) of theorem 1 holds, then the following assumptions
are true as n→∞:

(a) β̂n is a consistent estimator of β0;
(b) .β̂n −β0/

√
n converges weakly to a mean 0 Gaussian random variable with covariance

Σ1.β0/−1.

We prove theorems 1 and 2 in Appendix B.

4. Multicast interactions

In Sections 2 and 3, we have assumed that each interaction involves a single sender and a single
receiver. The model and corresponding asymptotic theory are sufficient to cover strictly pairwise
directed interactions (e.g. phone calls), but they do not describe interactions that can involve
multiple receivers (e.g. e-mail messages). We call an interaction involving a single sender and
possibly multiple receivers a multicast interaction.

In practice, multicast interactions are typically treated in an ad hoc manner via duplication—
for example, interaction i→{j1, j2, j3} becomes recorded as three separate pairwise interactions
i → j1, i → j2 and i → j3—giving rise to approximate likelihood and inference. In this section
we explore the implications of using this approximate likelihood in the multicast setting. In
particular we show it to be closely related to an extension of our model for directed pairwise
interactions, and that the bias introduced by such an approximation can be quantified and in
certain cases corrected.

For this, we introduce an extension of the model to the multicast setting. Let I, J , Jt.i/, xt.i, j/
andβ0 beas inSection2.Foreachsender i andpositive integerL, let λ̄t.i; L/beanon-negativepre-
dictable process called the baseline L-receiver intensity of sender i. Let .t1, i1, J1/, . . . , .tn, in, Jn/
be the sequence of observed multicast interactions, with tuple .t, i, J/ indicating that, at time t,
sender i interacted with receiver set J. For a set J , let |J | denote its cardinality.

Consider a model for multicast interactions where the rate of interaction between sender i
and receiver set J is

λt.i, J/= λ̄t.i; |J |/exp
{ ∑

j∈J
βT

0 xt.i, j/

} ∏
j∈J

1{j ∈Jt.i/}: .6/

The log-partial-likelihood at time t, evaluated at β, is

log{PLt.β/}=
∑

tm"t

( ∑
j∈Jm

βT xtm.im, j/− log
[ ∑

J⊆Jtm .im/

|J |=|Jm|

exp
{ ∑

j∈J
βT xtm.im, j/

}])
: .7/
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Suppose, instead of using the multicast model, that we use duplication to obtain pairwise
interactions from the original multicast data. If we use model (1) for the pairwise data and
ignore ties in the interaction times, we obtain an approximate partial likelihood:

log{P̃Lt.β/}=
∑

tm"t

( ∑
j∈Jm

βT xtm.im, j/− |Jm| log
[ ∑

j∈Jtm .im/

exp{βT xtm.im, j/}
])

: .8/

We claim that log{P̃Lt.β/} approximates log{PLt.β/}. Heuristically, replacing the sum over
all sets of size |Jm| in equation (7) with a sum over all multisets of size |Jm| (i.e. allowing duplicate
elements from Jtm.im/), observe that

log
[ ∑

J⊆Jtm .im/

|J |=|Jm|

exp
{ ∑

j∈J
βT xtm.im, j/

}]
≈ log

([ ∑
j∈Jtm .im/

exp{βT xtm.im, j/}
]|Jm|)

=|Jm|log
[ ∑

j∈Jtm .im/

exp{βT xtm.im, j/}
]
:

In this sense, log{PLt.β/}≈ log{P̃Lt.β/}. Section 4.1 makes this statement more precise, and
Section 4.2 analyses the bias that was introduced by maximizing log{P̃Lt.β/} in lieu of
log{PLt.β/}.

4.1. Approximation error
Define the receiver set growth sequence

Gn =
∑

tm"tn

1{|Jm|> 1}
|Jtm.im/|

: .9/

This sequence plays a critical role in bounding the error that was introduced by replacing log.PL/
with log.P̃L/. When |Jtm.im/| is constant Gn has linear growth but, when |Jtm.im/| increases,
Gn often has sublinear growth. For example, the Cauchy–Schwartz inequality gives

Gn "√
n

[
∑

tm"tn

1{|Jm|> 1}
|Jtm.im/|2

]1=2

,

so, if |Jtm.im/|=√m→∞, then Gn =O.
√

n/. Theorem 3 (which is proved in Appendix C) bounds
the approximation error in terms of Gn.

Theorem 3. Let .tm, im, Jm/ be a sequence of observations from a multivariate point process
with intensity as given in equation (6). Assume that supt‖xt.i, j/‖ and supm‖Jm‖ are bounded
in probability. If log.PL/ and log.P̃L/ are as defined in equations (7) and (8), and Gn is as
defined in equation (9), then, for β in a neighbourhood of β0,

‖∇[log{PLtn .β/}]−∇[log{P̃Ltn .β/}]‖=OP.Gn/,

and

‖∇2[log{PLtn .β/}]−∇2[log{P̃Ltn .β/}]‖=OP.Gn/:

4.2. Bias correction from the approximate partial likelihood
When we use ad hoc duplication, we are performing approximate inference under the multicast
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model (6). In practice, even if we explicitly want to use the multicast model, computing the
partial likelihood of equation (7) involves an intractable combinatorial sum, so we may resort
to using the approximation instead. Maximizing log{P̃Lt.·/} instead of log{PLt.·/} introduces
bias in the estimate of β0. Theorem 4 (which is proved in Appendix C) bounds the bias.

Theorem 4. Under the set-up of theorem 3, let β̂n maximize log{PLtn .·/} and let β̃n maximize
log{P̃Ltn .·/}. Suppose for all n that the Hessian .1=n/∇2[log{P̃Ltn .·/}] is uniformly locally
Lipschitz and with smallest eigenvalue bounded away from zero in a neighbourhood of β̂n.
If Gn=n→P 0, then

‖β̃n − β̂n‖=OP.Gn=n/:

That β̂n is a consistent estimator of β0 follows directly from the theory in Section 3, since
the multicast case can be considered as a special case of the single-receiver case: consider the
product I ×N+ as the sender set, and the power set P.J / as the receiver set. For sender .i, L/,
the process λ̄.i; L/ is then the baseline send intensity, and {J ⊆Jt.i/ : |J |=L} is the receiver set;
for sender–receiver pair ..i, L/, J/, vector Σj∈J xt.i, j/ is the covariate vector. Consistency of the
MPLE now follows from theorem 2.

Suppose that the true MPLE, β̂n, is a root-n-consistent estimate of β0. (Theorem 2 gives suffi-
cient conditions.) Theorem 4 says that, if |Jtm.im/| grows sufficiently fast to make Gn smaller than
OP.

√
n/, then the approximate MPLE, β̃n, is also root n consistent. Moreover, if .β̂n −β0/

√
n

is asymptotically Gaussian, then .β̃n −β0/
√

n is asymptotically Gaussian with the same covari-
ance matrix but possibly a different mean. Under enough regularity, −.1=n/[∇2log{P̃Ltn .β̃n/}]
consistently estimates the limiting covariance of .β̃n − β0/

√
n. To obtain the mean, we use a

parametric bootstrap as follows.
Assume that the conditions of theorem 4 hold. The residual β̃n −β0 depends continuously on

β0 and the covariate process xt.i, j/. Since β̃n is a consistent estimator of β0, we can estimate the
bias in β̃n via a parametric bootstrap. We generate a bootstrap replicate data set {.tm, im, J.r/

m /} by
drawing J.r/

m , a random subset of Jtm.im/ with size |Jm| whose elements are drawn proportional to
wtm.β̃n, im, ·/. We then obtain a bootstrap approximate MPLE, β̃

.r/
n , by maximizing P̃L

.r/

tn
, where

log{P̃L
.r/

t .β/}=
∑

tm"t

( ∑

j∈J
.r/
m

βT xtm.im, j/− |J.r/
m |log

[ ∑
j∈Jtm .im/

exp{βT xtm.im, j/}
])

:

Note that xt.i, j/ is determined from the original data set, not the bootstrap data set. For each
bootstrap replicate, we obtain a residual β̃

.r/
n − β̃n. With R bootstrap replicates, we estimate the

bias by

b̂ias= 1
R

R∑
r=1

β̃
.r/
n − β̃n:

We adjust for estimator bias by replacing β̃n with β̃n − b̂ias.

4.3. Simulation
We show a simulation study to verify the result of theorem 4 empirically. In the study, we have one
sender, and a receiver count |J | ranging from 32 to 1000. Each receiver was assigned a constant
covariate vector x.j/ whose elements were independent Bernoulli random variables with success
probability 1

2 . The components of the true coefficient vector β were drawn independently from
the standard normal distribution.

We chose sample sizes n ranging from 32 to 100000. For each receiver count |J |, we drew
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Fig. 1. Multicast coefficient estimation error with approximate MPLE: the receiver count jJ j is equal to the
square root of sample size n along the broken line

n multicast messages, with the receiver set Jm for message m determined as follows: we deter-
mined the size |Jm| by drawing from a geometric distribution with success probability p=0:4,
so that P{|Jm|=L}= .1−p/L−1p for L!1; once |Jm| had been determined, we chose between
all receiver sets with cardinality |Jm|, with P{Jm = J}∝ exp{Σj∈J βT x.j/}. Once we had gen-
erated the message data, we computed β̃ by maximizing the approximate log-partial-likelihood
analogous to equation (8). Finally, we computed ‖β − β̃‖.

We repeated this procedure for 100 random replicates at each receiver count and sample
size, and computed the mean-squared-error of β̃ by averaging the value of ‖β − β̃‖2 over all
replicates. Fig. 1 displays the results. From the spacings of the asymptotes of the curves in
Fig. 1, we can see that, if |J | does not grow with n, then the error ‖β − β̃‖2 is roughly O.|J |−2/
for large n; strictly speaking, the assumptions of theorem 4 do not hold in this scenario since
Gn =OP.n=|J |/, but nevertheless theorem 4 predicts an error rate of O.|J |−2/. For theorem 4
to apply, we require that |J | grow with n. From the slope of the broken line in Fig. 1, we can see
that, if |J |=√

n, then ‖β − β̃‖2 is roughly OP.n−1/; this agrees with theorem 4, since Gn =√
n

in this situation.

5. Fitting the model to a corporate e-mail network

Recall from Section 1 that, given a set of interaction data triples .t, i, j/, a primary modelling
goal lies in determining which characteristics and behaviours of the senders and receivers are
predictive of interaction. The modelling and inference framework that was introduced above
enables us to address these concerns directly, as we now demonstrate through the analysis of
a corporate e-mail network consisting of a large subset of the e-mail messages sent within
the Enron corporation between 1998 and 2002. These e-mail interaction data give rise to the
following questions.
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(a) Homophily: to what extent are traits shared between individuals (gender, department or
seniority) predictive of interaction behaviours?

(b) Network effects: to what extent are dyadic or even triadic network effects, as characterized
by past interaction behaviours, relevant to predicting future interaction behaviours?

We undertake our analysis by using the multicast proportional intensity modelling framework
developed in Sections 2 and 3 above, employing both static covariates reflecting actor traits,
as well as dynamic covariates capturing network effects. The bootstrap technique that was
introduced in Section 4 for multicast interactions is then used to reduce bias in the estimated
effects, as well as to demonstrate that our asymptotic approximations are reasonable in this
data modelling regime. We conclude this section with a discussion of the goodness of fit of our
model in this setting, before turning our attention in Section 6 to an evaluation of the strength
of homophily and network effects in explaining these data.

5.1. Data and methods
Our example analysis uses publicly available data from the Enron e-mail corpus (Cohen, 2009),
a large subset of the e-mail messages that were sent within the Enron corporation between 1998
and 2002, and made public as the result of a subpoena by the US Federal Energy Regulatory
Commission during an investigation into fraudulent accounting practices. We analyse the data
set that was compiled by Zhou et al. (2007), comprising 21635 messages sent between 156 em-
ployees between November 13th, 1998, and June 21st, 2002, along with the genders, seniorities
and departments of these employees.

Approximately 30% of these messages have more than one recipient across their ‘To’, ‘CC’ and
‘BCC’ fields, with a few messages having more than 50 recipients. In the subsequent analysis,
we exclude messages with more than five recipients—a subjectively chosen cut-off that avoids
e-mails sent en masse to large groups.

We model these data by using the multicast proportional intensity model of Section 4, with
I =J ={1, 2, . . . , 156} and Jt.i/=I \{i}, and with static and dynamic covariates described in
the next section. We fit the model by first maximizing the approximate log-partial-likelihood
log{P̃Lt.β/} of model (8), and then employing a parametric bootstrap to estimate and correct the
resultant bias in parameter estimates. We calculate standard errors by using the corresponding
asymptotic theory. In the setting of this example, the interaction count is high, so the asymptotic
framework that was developed in Sections 3 and 4 is natural. The main violation of assumptions
1–4 is that our covariates (described in Section 5.2) may in principle be unbounded; nevertheless,
bootstrap calculations (described in Section 5.3) show that the asymptotic approximations that
we employ remain reasonable in this regime.

We wrote custom software in the C programming language to fit the model by using Newton’s
method. Our implementation exploits structure in the covariates to make the computational
complexity of the fitting procedure roughly linear in the number of messages and the number of
actors. Appendix A describes the fitting procedure in detail. It took approximately 20 min to fit
the full model by using a standard desktop computer with a 2.4-GHz processor and 4 Gbytes of
random-access memory. Each bootstrap replicate took approximately 10 min to generate and fit,
using the original estimate as a starting point for the fitting algorithm. Most of the complexity
in the fitting procedure is due to the inclusion of triadic covariates as described below; including
only dyadic covariates reduces the fitting time to approximately 1 min.

5.2. Covariates
The goal of our investigation is to assess the predictive ability of actor traits and network
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effects. For this, we choose covariates that encode these traits and effects. Each covariate is
encoded as a component of the time varying dyad-dependent vector xt.i, j/, which is linked to
the rate of interaction between sender i and receiver j via the multicast proportional intensity
model (1).

5.2.1. Static covariates to measure homophily and group level effects
Consider first those actor traits that do not vary with time: the actors’ genders, departments
and seniorities. We encode the traits of actor i and their second-order interactions by using nine
actor-dependent binary (0–1) variables, as described in Table 1.

We encode all 20 identifiable first-order interactions between the traits of sender i and receiver
j as components of xt.i, j/. We do this by using variates of the form Y.j/ and X.i/ ·Y.j/, where X
and Y are chosen from the list of four actor-dependent variates (L, T , J , F ). We also include four
receiver-specific covariates of the form 1 ·Y.j/. We cannot identify the coefficients for covariates
of the form X.i/ ·1; if a component of xt.i, j/ is the same for all values of j, then the corresponding
component of β will not be identifiable since the product of the two can be absorbed into λ̄t.i/
without changing the likelihood.

We measure homophily by way of the estimated coefficients for covariates of the form
X.i/ · X.j/. For example, if the sum of the coefficients of 1 · J.j/ and J.i/ · J.j/ is large and
positive, this tells us that junior employees exhibit homophily in their choice of message
recipients.

5.2.2. Dynamic covariates to measure network effects
Static effects are useful for determining which traits are predictive of the relative rate of inter-
action between sender i and receiver j, but they do not shed light on network effects. Therefore,
we are also interested in the predictive relevance of the dynamic network behaviours that are
described in Table 2. The first two behaviours (send and receive) are ‘dyadic’, involving exactly
two actors, whereas the last four (2-send , 2-receive, sibling and cosibling) are ‘triadic’, involving
exactly three actors.

To measure first-order dependence of message exchange behaviour on these network effects,
we introduce binary indicators for all six effects as components of xt.i, j/. These indicators
depend on the sender i, the receiver j and the history of the process at the current time t. By the
shorthand notation 1{send}, we denote the indicator variable depending on sender i, receiver
j and the current time t, which indicates whether i has sent j a message before time t, with the
remaining notations (1{receive}, 1{2-receive}, etc.) defined similarly.

To measure higher order time dependence, we introduce additional covariates of the following
form. We partition the interval [−∞, t/ into K =7 subintervals:

Table 1. Actor-specific traits, with counts of how many
of the 156 actors share each trait

Variate Characteristic of actor i Count

L.i/ Member of the Legal Department 25
T.i/ Member of the Trading Department 60
J.i/ Seniority is junior 82
F.i/ Gender is female 43
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Table 2. Dynamic covariates to measure network effects

[−∞, t/= [t −∆K, t −∆K−1/∪ [t −∆K−1, t −∆K−2/∪: : :∪ [t −∆1, t −∆0/

where ∞=∆K > ∆K−1 > : : : > ∆1 > ∆0 = 0 and ‘t −∞’ is defined to be −∞. Specifically, we
set ∆k =7:5 min×4k for k =1, . . . , K −1 so that for k in this range ∆k takes the values 30 min,
2 h, 8 h, 32 h, 5:33 days and 21:33 days.

Define the half-open interval I
.k/
t = [t −∆k, t −∆k−1/. For k = 1, . . . , K we define the dyadic

effects

send.k/
t .i, j/=#{i→ j in I

.k/
t },

receive.k/
t .i, j/=#{j → i in I

.k/
t };

for sender i, such that these covariates measure the number of messages sent to, and respectively
received by, receiver j in time interval I

.k/
t .

The dyadic effects have been defined in the manner above to enable easy interpretation of the
corresponding coefficients. To illustrate this, for k =1, . . . , K, suppose that βk is the coefficient
corresponding to send.k/

t .i, j/. If we observe the message i → j at time t, then, for future time
t′ in the interval .t, t +∆1], the rate λt′.i, j/ will be multiplied by the factor exp.β1/; for t′ in
the interval .t +∆1, t +∆2], the rate will be multiplied by exp.β2/; this continues similarly, with
the rate being multiplied by exp.βk/ whenever t′ ∈ .t + ∆k−1, t + ∆k] and, equivalently, when
∆k−1 <t′ − t "∆k. Thus, the coefficients β1, . . . , βK measure the effect of a ‘send event’ and how
this effect decays over time. We expect that βk will decrease as k increases, but we do not enforce
this constraint on the estimation procedure.

The triadic effects involve pairs of messages. For k = 1, . . . , K and l = 1, . . . , K we define the
triadic effects

2-send.k,l/
t .i, j/=

∑
h %=i,j

#{i→h in I
.k/
t }#{h→ j in I

.l/
t },

2-receive.k,l/
t .i, j/=

∑
h %=i, j

#{h→ i in I
.k/
t }#{j →h in I

.l/
t },

sibling.k,l/
t .i, j/=

∑
h %=i,j

#{h→ i in I
.k/
t }#{h→ j in I

.l/
t },

cosibling.k,l/
t .i, j/=

∑
h %=i,j

#{i→h in I
.k/
t }#{j →h in I

.l/
t }:
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For sender i and receiver j, the covariate 2-send.k,l/
t .i, j/ counts the pairs of messages such that,

for some h distinct from i and j, message i → h occurred in interval I
.k/
t and message h → j

occurred in interval I
.l/
t ; the other covariates behave similarly.

As with the dyadic effects, the triadic effects are designed so that their coefficients have a
straightforward interpretation. However, since triadic effects involve pairs of messages, the
interpretation is a little more involved. We illustrate with the 2-send.k,l/

t .i, j/ covariate having
coefficient βk,l for k = 1, . . . , K and l = 1, . . . , K. Take i and j to be two actors. Suppose that at
time t we observe the message h→ j. At this point, we look through the history of the process
for all messages of the form i→h; when paired with the original h→ j message, each of these
defines a ‘2-send event’. The other 2-send events are defined as follows: if at time s we observe
the message i→h, then we enumerate all observed messages h→ j in the history of the process;
when each of these is paired with the original i→h event it constitutes a 2-send event. A pair
.s, t/ can be associated with each 2-send event, where s is the time of the i→h message and t is
the time of the h→ j message. At time t′ after s and t, the existence of the 2-send event causes
the sending rate λt′.i, j/ to be multiplied by the factor exp.βk,l/, where t′ ∈ .s +∆k−1, s +∆k]
and t′ ∈ .t +∆l−1, t +∆l]. We expect βk,l to decrease as k and l increase, though again we do not
enforce this constraint in the fitting procedure.

As previously noted, Butts (2008) used a variant of the proportional intensity model to
capture interaction behaviour in social settings. As such, a correspondence can be drawn between
certain of the covariates in Butts (2008) and those outlined above. If we set K = 1, then the
sendt covariate is equivalent to an unnormalized version of Butts’s persistence covariate, and
the sum sendt + receivet becomes an unnormalized version of Butts’s preferential attachment
covariate. For the triadic effects, Butts’s OTP, ITP, ISP and OSP covariates are analogous to the
2-send, 2-receive, sibling and cosibling covariates, although the exact definitions differ slightly.
(For example, OTPt.i, j/ is defined as Σh min[#{i→h in .−∞, t/}, #{h→ j in .−∞, t/}].) The
versions of these covariates that we have introduced above, however, are designed to enable
a more precise quantification of the time dependence of network effects, as well as a more
straightforward interpretation of the corresponding coefficients. In related models, Vu et al.
(2011a,b) used similar covariates, except that they did not partition [−∞, t/ into subintervals.

5.3. Bootstrap bias correction
Given the model specification, data and covariates outlined above, we can estimate the parameter
vector β0 under the approximate log-partial-likelihood (8). Recall that the results of Section 4
bound the bias resulting from this approximate MPLE procedure as a function of the growth
rate of the recipient set J over time. Here, treating the set J of 156 Enron employees as constant,
the resultant bias is of order 1=|J |—and, since |J |= 156 is of the order of the square root of
the number 21365 of messages in the data set, we can correct this bias by using the parametric
bootstrap outlined at the end of Section 4.

Fig. 2 summarizes the corresponding bootstrap residuals (from 500 replicates) for each com-
ponent of the estimated parameter vector β0; we can see from Fig. 2 that treating messages
with multiple recipients as multiple single-recipient messages introduces bias of the order of the
standard error for most of the coefficients. There is a pronounced negative bias in coefficient es-
timates for the dyadic effects, which is representative of a more general phenomenon. Sparsity in
the components of xt.i, j/ (when considered as a function of j), when combined with high values
of the corresponding entries β, leads to negative bias in the coefficient estimates when there are
messages with multiple recipients. The approximation in equation (7) is worst when, for some
jÅ, weight wtm.im, jÅ/ far exceeds all other values of wtm.im, j/, so that wtm.im, jÅ/ ≈ Wtm.im/;
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Fig. 2. Enron bootstrap residuals—summary of bootstrap residuals for estimated coefficients by using the
Enron data set, normalized by estimated standard errors (the coefficients are grouped by model term): ,
means; , ˙1 standard deviation

when |Jm| is large, the maximum of P̃L will avoid this situation by shrinking β where xtm.im, j/
is sparse. The dyadic covariates are particularly sparse, so the estimates for their coefficients are
particularly vulnerable to this bias.

Besides correcting for bias, the bootstrap simulations give us confidence that the asymptotic
approximations are reasonable. The simulated standard errors are very close to those predicted
by the theory, despite the norm ‖xt.i, j/‖2 being potentially unbounded, contrary to the as-
sumptions of theorem 1.

5.4. Goodness of fit
Table 3 details an ad hoc analysis of deviance for the fitted model, showing how the approximate
deviance (twice the approximate log-partial-likelihood) behaves as we add consecutive terms to
the model. Group level (static) effects account for 15% of the null deviance and network effects

Table 3. Ad hoc analysis of deviance for the Enron model†

Term Degrees of Deviance Residual Residual
freedom degrees of deviance

freedom

Null 32261 325412
Static 20 50365 32241 275047
Send 8 107942 32233 167105
Receive 8 5919 32225 161186
Sibling 50 3601 32175 157585
2-send 50 516 32125 157069
Cosibling 50 1641 32075 155428
2-receive 50 158 32025 155270

†Residual deviance is defined as twice the approximate negative log-
partial-likelihood from equation (8). The ‘static’ term contains the group
level effects, and the other terms contain the network effects.
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account for 37%. The most dramatic decrease in the residual deviance comes from introducing
the ‘send’ terms into the model; with only 8 degrees of freedom, they can account for 33% of
the null deviance. The full model accounts for 52% of the null deviance.

The residual deviance for the full model is approximately 4.8 times the residual degrees of
freedom, and so an ad hoc adjustment for this overdispersion is to multiply the calculated
standard errors by

√
4:8≈2:2.

Note, however, that the residual deviance by itself is not adequate as a goodness-of-fit measure,
as it depends only on the estimated coefficients (see section 4.4.5 of McCullagh and Nelder (1989)
for discussion of a related problem for logistic regression with sparse data). To shed more light
on how well the model fits these data, we use a normalized version of the martingale residual
from Therneau et al. (1990), which we call a Pearson residual. Specifically, given β̂, we define

N̂t.i, j/=
∑

tm"t

wtm.β̂, i, j/

Wtm.β̂, i/
1{im = i},

Fig. 3. Godness-of-fit plots for (a) static and (b) static and dynamic observed count N̂1.i, j/ plotted
against expected count N̂1.i, j/, and (c) static and (d) static and dynamic Pearson residual {N1.i, j/ !
N̂1.i, j/}=N̂1.i, j/1=2 versus expected count
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which is the expected number of i → j events given the estimated model, with
∫

λ̄t.i/dt
estimated by the Breslow (1974) estimate

∫
Wt.β̂, i/−1 Σj dNi,j.t/. The martingale residual anal-

ogous to that of Therneau et al. (1990) is then defined as Nt.i, j/ − N̂t.i, j/; we normalize this
quantity by an estimate of its standard deviation to obtain a ‘Pearson’ residual:

{Nt.i, j/− N̂t.i, j/}=N̂t.i, j/1=2:

Fig. 3(a) shows a plot of N∞.i, j/ versus N̂∞.i, j/ for two different models. In the ‘static’ model,
we include only the static covariates, whereas, in the full (‘static and dynamic’) model, we also
include all six types of network covariates. The fit for the static model is poor. For instance, it
repeatedly predicts up to 200 i→j events where we observed only one or two; likewise, the model
predicts one or fewer events where we observed up to 20. For the full model, which includes the
dynamic covariates to account for network effects, the fit is much better, with the relationship
between observed and expected interaction counts being roughly linear.

Fig. 3(b) shows the Pearson residuals. For the full model, more than 95% are less than 1.21
in absolute value, and the maximum absolute residual is 18.7. In contrast, the 95% quantile for
the absolute residuals in the static model is at 3.5, and the maximum absolute residual is 182.7.
The sum of squares of the residuals (X2) is 17281 in the full model; that for the static model is
over 34 times higher (596253). We do not know what a ‘reasonable’ value for X2 is; an ad hoc
degrees-of-freedom calculation suggests that for the full number this should be roughly equal to
23944 = 156 × 155 − .20 + 2 × 8 + 4 × 50/, which suggests that the full model is too aggressive.
The bootstrap simulations confirm this, with 17055 being 5.6 standard deviances below the
mean value X2 for the bootstrap replicates.

For a more parsimonious model, we might drop most of the triadic effects. Indeed, the model
which only uses dyadic effects has an X2-value of 21094. However, at this stage we desire a
model with the lowest possible bias, and also wish to acquire estimates for all of the network
effects.

6. Evaluating the strength of homophily and network effects

Given the model fitting procedure and results that were described above, we may now evaluate
the strength of homophily and network effects in predicting the interaction behaviour that is
observed in our data.

6.1. Assessing evidence for homophily in the Enron data
The analyses of Section 5 have established that our multicast proportional intensity model
with chosen covariates is reasonably accurate in describing message recipient selection, con-
ditional on the sender and the history of the process. Thus, we are justified in using the estim-
ated coefficients from the model to assess the predictive ability of the corresponding covariates.

Our first task is to gauge the predictive strength of homophily. For this, Table 4 shows the
estimated group level coefficients for our model. Notably, homophily is evident for almost all
main effects (department, seniority and gender): the estimated coefficients of L.j/, T.j/ and J.j/
are all negative, whereas the sum of the estimated coefficients of F.j/ and F.i/ ·F.j/ is positive.
Negative homophily is evidenced in that the sum of the coefficients for L.j/ and L.i/ · L.j/ is
negative. The coefficient of F.j/ and the sum of the coefficients for T.j/ and T.i/ ·T.j/, and J.j/
and J.i/ ·J.j/ are not significant.

Taking gender as an example, the way that the homophily effect manifests is as follows:
if i is a female sending a message at time t, and person j is identical to person j′ except for
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Table 4. Estimated coefficients and standard errors for
group level covariates of the form X.i/ "Y.j/, where i is the
sender, j is the receiver and X.i/ and Y.j/ are given in the
row and column headings†

Sender Coefficients for the following receivers:

L T J F

1 −0.91† −0.36† −0.34† 0.04
(0.04) (0.04) (0.04) (0.03)

L 0.63† 0.28† 0.22† 0.15†
(0.05) (0.05) (0.04) (0.04)

T 0.32† 0.43† 0.27† −0.07
(0.07) (0.05) (0.05) (0.05)

J 0.06 0.28† 0.37† −0.13†
(0.05) (0.04) (0.03) (0.03)

F 0.59† −0.21† −0.09 0.15†
(0.05) (0.05) (0.04) (0.03)

†Significant (via Wald test) at level 10−3.

gender, then i is more likely to send to the similarly gendered individual. The relative rate is
exp.0:04+0:15/≈1:2. The characterization for other types of homophily is similar.

Conspicuously, the only example of negative homophily is when the sender i is in the Legal
Department. In this case, if person j is identical to person j′ except for department, then i is
more likely to send to an individual in a different department. The relative rates for the three
departments are exp.0:63−0:91/≈0:76 for the Legal Department, exp.0:28−0:36/≈0:92 for
the Trading Department and exp.0/=1 for any other department.

Were we interested only in homophily, we might be tempted to forgo the proportional inten-
sity model (1), and instead to perform a contingency table analysis. The on-line supplementary
material explores this approach in detail. The major shortcoming of the contingency table ap-
proach is that it assumes that the messages are independent, which leads to bias in the parameter
estimates.

6.2. Evaluating the importance of network effects
In Section 6.1 we established that homophily was predictive of sending behaviour, even after
accounting for network effects. We now investigate the characteristics of these network effects
and establish which of these effects are of greatest importance.

To begin our analysis, Table 5 shows the estimated coefficients for the network indicator
effects, giving a crude picture of the predictive importance of each network effect. The estimated
coefficients are all positive, indicating that network effects strengthen the ties between
individuals. The estimated coefficient for 1{send} is over three times larger than the other
coefficients, agreeing with the general notion that one is most likely to do today the things
that one did yesterday. The next tier of indicator effects comprises 1{receive}, 1{sibling} and
1{2-send}, whose estimated coefficients range from 0.67 to 1.06. Two triadic effects, 1{2-receive}
and 1{cosibling}, are not significantly predictive of sending behaviour.

The estimated coefficients for the recency-dependent covariates, which are shown in Figs 4
and 5, give a more complete picture of network effects. Firstly, we can see that dyadic effects
persist for over 3 weeks from the time that a message has been sent. The decay of the estimated
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Table 5. Estimated coeffi-
cients for network indicator
effects†

Variate Coefficient

1{send} 3.26
(0.03)

1{receive} 0.97
(0.02)

1{2-send} 0.67
(0.05)

1{2-receive} 0.01
(0.04)

1{sibling} 1.06
(0.05)

1{cosibling} 0.09
(0.04)

†Standard errors are given in
parentheses.

Fig. 4. Estimated coefficients for dyadic effects, with standard errors: (a) send; (b) receive

coefficients is roughly exponential in the time elapsed, corresponding to a superexponential
decay in the relative sending rate. For 30 min after i sends a message to j, our estimated model
predicts that the rate at which i sends to j will be multiplied by exp.1:11/ ≈ 3:05, and the rate
at which j sends to i will be multiplied by exp.1:85/ ≈ 6:39; then, between 30 min and 2 h,
the rates will be multiplied by exp.0:51/≈1:67 and exp.0:70/≈2:02 respectively; this proceeds
similarly until after 21.3 days, when the rates will be multiplied by exp.0:003/ ≈ 1:002 and
exp.0:002/≈1:002.

Comparing the coefficients for send.k/
t with those of receive.k/

t we see that the latter are higher
for k " 2, whereas the former are higher for k > 2. The corresponding intuition is that, if A is
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Fig. 5. Estimated coefficients for triadic effects, with standard errors: (a) 2-send; (b) 2-receive; (c) sibling;
(d) cosibling

sending a message up to 2 h after receiving a message from B, then A is likely to respond to B but,
after that, A is more likely to send to an individual whom A e-mailed at the time of receiving B’s
original message (provided that B and this other individual are identical in all other respects).
The time window during which reciprocation is more important than past habit is less than 8 h.

From Fig. 5, we can see that the triadic effects are in general less pronounced and are much
more short lived than the dyadic effects. About 86% of the estimated coefficients are within 3
standard errors of 0; even those that are significantly non-zero mostly lie between −0:05 and
0:05. The exceptions are the coefficients for sibling.1,1/

t (0:51), sibling.2,2/
t (−0:14), sibling.3,2/

t

(0:15), cosibling.1,2/
t (0:32), 2-receive.4,1/

t (−0:21) and 2-receive.4,2/
t (0:09). We may interpret these

coefficients as follows.

(a) sibling: if B sent A and C messages in the last 30 min or between 2 and 8 h ago, then A and
C are more likely to send messages to each other; however, if B sent A and C messages
between 30 min and 2 h ago, then A and C are less likely to send messages to each other.

(b) cosibling: if A sent a message to B in the last 30 min, and C sent a message to B between
30 min and 2 h ago, then A will send to B at a higher rate.

(c) 2-receive: if A sent a message to B in the last 30 min, and B sent a message to C between
8 h and 32 h ago, then C will send to A at a lower rate; if, however, the message from A
to B was sent between 30 min and 2 h ago, then C will send to A at a higher rate.
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Given the emphasis on transitivity in the networks literature, it may at first seem disconcert-
ing that most of the estimated coefficients for the time-dependent triadic effects are found to be
insignificant in this analysis. However, one must bear in mind that, except for messages sent to
them directly, individuals are likely to have no knowledge of their colleagues’ e-mail activities,
and therefore there is no reason why this activity should directly affect sending behaviours. Any
predictive power that the triadic effects have, then, must be due to correlation with exogenous fac-
tors. In this light, it is not surprising that the triadic effects are small and have small time horizons.

The results above provide a detailed view of the ways in which network effects can manifest
themselves in data. The on-line supplementary material contains comparative analyses based
on an actor-oriented model and an exponential random-graph model. (See Snijders et al. (2010)
and Anderson et al. (1999) respectively for detailed surveys.) These analyses further bolster our
confidence in the results of this section.

7. Conclusion

Our analysis of the Enron corpus in Sections 5 and 6 has demonstrated the ways in which static
and dynamic effects manifest themselves in e-mail communication networks, and we expect
similar conclusions to hold broadly for other types of directed interaction data. Relative to
alternatives such as contingency table analyses, actor-oriented network models and exponential
random-graph models, an advantage of our approach lies in its ability to model the given data
directly, rather than in an aggregated form. We can adjust for network effects to obtain more
reliable estimates of homophily, and by using continuous time information we obtain precise
quantification on the time-dependent behaviour of the network effects.

In this work, our focus has been on the coefficient vector β. We have used partial likelihood for
its estimation, enabling us to treat each sender-specific baseline intensity λ̄t.i/ as a nuisance
parameter. Were we to use the model for prediction, we would need to estimate baseline
intensities; this could be done by using a Nelson–Aalen estimator as in Andersen et al. (1993).

The foundation of our work is Cox’s (1972) proportional intensity model and partial likelihood
theory, tools which he first introduced 40 years ago and which have been significantly developed
since then (Cox, 1975; Fleming and Harrington, 1991; Andersen et al. 1993; Martinussen and
Scheike, 2006; Cook and Lawless, 2007). These tools are used extensively in the context of
survival analysis but require further development for use in modelling interaction data. In this
vein, we have extended the associated theory in two directions: first, we have provided results
that are asymptotic in time rather than in the size of the population under study; second, we
have shown that treating multicast interactions via duplication leads to bias in the parameter
estimates (which can in turn be corrected in certain regimes).

We find that the proportional intensity model with time varying covariates is particularly useful
for modelling repeated directed interactions. The model is simple, flexible and well established,
and it facilitates investigation into which traits and behaviours are predictive of interaction.
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Appendix A: Implementation

To compute the MPLE, we use Newton’s method as described in Boyd and Vandenberghe (2004). This
requires an efficient algorithm for computing the gradient and Hessian of the log-partial-likelihood. For
simplicity, we describe the case of strictly pairwise interactions with no ties in the interaction times. We use
the notation from Section 2, with model (1) and partial likelihood (2). Recall that xt.i, j/ is in Rp. Assume
that |I|= I and |J |=J .

Suppose that .t1, i1, j1/, . . . , .tn, in, jn/ is the sequence of observed interactions. Set n.i/=#{im : im = i}:
The partial likelihood factors into a product of terms, one for each sender:

PLt .β/=
∏
i∈I

PLt .β, i/, PLt .β, i/=
∏

tm!t,
im=i

wtm .β, i, jm/

Wtm .β, i/
:

This factorization allows us to compute log{PLt .β/} and its derivatives by computing the sender-specific
terms in parallel and then adding them together.

The gradient and Hessian of the sender-specific log-partial-likelihood are respectively

∇[log{PLt .β, i/}]=
∑

tm!t,
im=i

xtm .i, jm/−
∑

tm!t,
im=i

Etm .β, i/, .10a/

−∇2[log{PLt .β, i/}]=
∑

tm!t,
im=i

Vtm .β, i/, .10b/

where Et.β, i/ and Vt.β, i/ are as defined in equations (5a) and (5b). When xt.i, j/ is constant over time,
sufficient statistics for β imply that these formulae simplify. Otherwise, computing the first two derivatives
of log{PLtn .β/} necessitates iterating over all messages, potentially requiring time O.nJp2/. For small to
medium sized data sets, this is manageable, but for large network data sets it can become prohibitive. In
what follows we show how to exploit sparsity to reduce the computation time drastically.

A.1. Initial values
We shall need to compute W0.β, i/, w0.β, i, j/, E0.β, i/ and V0.β, i/ for all values of i and j. In the worst
case, doing so will take O.IJp2/. However, often the senders belong to a small number, Ī 2 I, of groups
such that if, i and i′ are in the same group, then the corresponding values of W0, π0, E0 and V0 are the
same, reducing the total complexity to O.ĪJp2/. The remaining complexity estimates assume that the
initial values have all been precomputed.

A.2. Exploiting sparsity
We first decompose x into its static (non-time-varying) and dynamic parts as follows:

xt.i, j/=x0.i, j/+∆xt.i, j/: .11/

Typically, we can quickly compute the dynamic part ∆xt.i, j/ at each observed message time by incre-
mentally updating it. Further, ∆xt.i, j/ is 0 for most .i, j/ pairs—often ∆xt.i, j/ is 0 unless i and j have a
common acquaintance or they have interacted in the past. For convenience, set J0.i/=J . Let

J̄ .i/={j ∈J : j ∈Jt .i/ and ∆xt.i, j/ %=0 for some t}∪{j ∈J : j =∈Jt .i/ for some t}:

For fixed t and i, assume that computing ∆xt.i, j/ for all values of j takes amortized time O.dJ̄/.
Since J0.i/=J , we have that

wt .β, i, j/=w0.β, i, j/ exp{βT∆xt.i, j/}1{j ∈Jt .i/}
=w0.β, i, j/+∆wt .i, j/,

Wt.β, i/=W0.β, i/+
∑

j∈J̄ .i/

∆wt .i, j/,

where

∆wt .i, j/=w0.β, i, j/[exp{βT ∆xt.i, j/}1{j ∈Jt .i/}−1];

here we have used that ∆wt .i, j/ is 0 unless j ∈ J̄ .i/. Write
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πt .β, i, j/=wt .β, i, j/=Wt.β, i/;

then, defining

γt .i/=W0.β, i/=Wt.β, i/,
∆πt .β, i, j/=∆wt .β, i, j/=Wt.β, i/,

we can express πt .β, i, j/ as

πt .β, i, j/=γt .i/π0.β, i, j/+∆πt .β, i, j/:

Moreover, given the initial values W0.β, i/ and w0.β, i, j/, we can efficiently keep track of γt .i/ and
∆πt .β, i, j/: for any i and t, it takes amortized time O.J̄dp/ to evaluate γt .i/ and all values of ∆πt .i, j/ as
j varies.

A.3. Computing the gradient
In evaluating the gradient of the log-partial-likelihood as given by equation (10a), the sum Σm xtm .i, jm/
can be computed in time O.np/, whereas the computationally expensive term is Σm Etm .β, im/: In what
follows we show how to exploit sparsity in x to reduce the associated computational overhead.

To simplify the notation, we suppress the dependence of all quantities on β and i. Consider πt and ∆πt

to be vectors of length J , and write

πt =γtπ0 +∆πt :

Also, let Xt = Xt.i/ and ∆Xt = ∆Xt.i/ be the J × p matrices whose jth rows are xt.i, j/ and ∆xt.i, j/
respectively, so that

Xt =X0 +∆Xt:

Using these expressions, we obtain

Et =XT
t πt =γtE0 +XT

0 ∆πt +∆XT
t πt ,

and thus
∑
m

im=i

Etm =
( ∑

m
im=i

γtm

)
E0 +XT

0

( ∑
m

im=i

∆πtm

)
+

∑
m

im=i

∆XT
tm

πtm :

Taking advantage of the sparsity in ∆Xt and ∆πt , computing the three sums on the right-hand side
takes time O{n.i/J̄dp}. Once the sums are known, the multiplication .Σγtm /E0 takes time O.p/, and
the multiplication XT

0 .Σ∆πtm / takes time O{J̄p}. Thus, we can compute Σm
im=i Etm in time O{n.i/J̄dp}.

Computing these terms separately for each i and then summing over all i to obtain the total gradient
requires time O.nJ̄dp+ Ip/.

A.4. Computing the Hessian
Computing the Hessian according to equation (10b) proceeds similarly to the case of the gradient. We
need to compute the sum ΣmVtm .β, im/ efficiently; whereas a naive computation requires time O.nJp2/,
this can be significantly improved by exploiting sparsity in xt.i, j/.

For this, define Πt .β, i/ to be the J ×J diagonal matrix with .Πt .β, i//jj =πt .β, i, j/, and set ∆Πt .β, i/=
Πt .β, i/−Π0.β, i/. Suppressing the dependence on β and i, we have

Vt =XT
t .Πt −πtπ

T
t /Xt

=XT
0 .Πt −πtπ

T
t /X0 +∆XT

t .Πt −πtπ
T
t /X0 +XT

0 .Πt −πtπ
T
t /∆Xt +∆XT

t .Πt −πtπ
T
t /∆Xt:

The first of these terms reduces to

XT
0 .Πt −πtπ

T
t /X0 =γtV0 +γt .1−γt /E0E

T
0 −E0.γt ∆πt /

TXT
0 −X0.γt ∆πt /E

T
0 +XT

0 .∆Πt −∆πt∆πT
t /X0,

and the second can be expressed as
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∆XT
t .Πt −πtπ

T
t /X0 = .γt∆Xtπt /E

T
0 +∆XT

t .Πt +πt∆πT
t /X0:

The third term is the transpose of the second; the fourth does not simplify.
To compute the sum Σm

im=i Vtm , we only accumulate sums of terms that change with time: γt , ∆πt ,
γt .1 − γt /, γt∆πt , ∆πt∆πT

t , γt∆Xtπt , ∆XT
t .Πt + πt∆πT

t / and ∆XT
t .Πt − πtπT

t /∆Xt . Doing so takes time
O.J̄dp2/ for each time increment. As with the gradient computation, we compute the sums separately for
each i and then sum over all i, so that the total computation time is O.nJ̄dp2 + Ip2/.

A.5. Total computation time
To perform one Newton step in maximization of the log-partial-likelihood (2), we must first compute the
gradient and Hessian of the log-partial-likelihood at the current value of β, and then compute the inverse
of the Hessian and its product with the gradient. Once we have the Hessian, computing its inverse takes
time O.p3/. Typically, it takes O.1/ Newton steps to compute the maximum of a convex function (the
constant is often below 30). The key factors in determining the computation time by using the factors laid
out above are Ī, J̄ and d.

(a) The value of Ī depends on the structure of x0.i, j/. Specifically, Ī is equal to the number of distinct
values of the matrix X0.i/ as i varies. For the Enron data, we have that Ī =12: each sender belongs
to one of 12 groups determined by group .L, T or O/, seniority (J or S) and gender (F or M), and
so the matrix X0.i/ depends only on the group of i.

(b) The value of J̄ depends on the sparsity of xt.i, j/. If xt.i, j/ includes only dyadic network effects,
then J̄ will typically be of size O.1/ or O.Jα/ for a fractional value α; when we add triadic effects,
this size will typically grow to at most O.J2α/.

(c) The value of d depends on further structure in xt.i, j/. In our implementation, d =O.1/ for dyadic
effects and d =O.J̄/ for triadic effects.

The total computational cost per Newton step is thus O.ĪJp2 +nJ̄dp2 + Ip2 +p3/, with the significance
of this expression being that it is nearly linear in I , J and n. Thus, the algorithm scales naturally to large
data sets.

Appendix B: Results from Section 3

B.1. Proof of theorem 1
Observe that the process Nt.i, j/ has compensator Λt .i, j/ =

∫ t

0 λs.i, j/ds; similarly, processes Nt.i/ and
Nt have compensators Λt .i/=Σj∈J Λt .i, j/ and Λt =Σi∈I Λt .i/. Correspondingly, define local martingales
Mt.i, j/=Nt.i, j/−Λt .i, j/, Mt.i/=Nt.i/−Λt .i/ and Mt =Nt −Λt ; also define

Ht.i, j/=xt.i, j/−Et.β0, i/,

where Et.β, i/ is as defined in equation (4a).
As observed by Andersen and Gill (1982), the score function Ut.·/ evaluated at β0 has a simple repre-

sentation in terms of these processes:

Ut.β0/=
∑
i∈I

∑
j∈J

∫ t

0
Hs.i, j/dNs.i, j/

=
∑
i∈I

∑
j∈J

∫ t

0
Hs.i, j/dMs.i, j/,

since Σj∈J
∫ t

0 Hs.i, j/dΛs.i, j/ = 0: Since, by assumption 1, x is uniformly bounded, H is as well. Each
term in the sum above is thus locally square integrable, with predictable covariation

〈∫
Hs.i, j/dMs.i, j/,

∫
Hs.i

′, j′/dMs.i
′, j′/

〉

t
=

∫ t

0
Hs.i, j/⊗Hs.i

′, j′/d〈M.i, j/, M.i′, j′/〉s

=
∫ t

0
.Hs.i, j//⊗2 dΛs.i, j/1{i= i′, j = j′}

(Fleming and Harrington (1991), theorem 2.4.3). There is a sequence of stopping times localizing all M.i, j/
simultaneously, so U.β0/ is locally square integrable with predictable variation
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〈U.β0/〉t =
∑
i∈I

∑
j∈J

∫ t

0
.Hs.i, j//⊗2 dΛs.i, j/

=
∑
i∈I

∫ t

0
Vs.β0, i/dΛs.i/: .12/

Now we rescale time. For each positive n define a discretized time-scaled version of the score that is
right continuous with limits from the left. The process is defined for times α in [0, 1]; between times in
[k=n, .k +1/=n), it takes the value Utk , i.e.

Ũ
.n/

α .β/=Ut+αn,.β/: .13/

To prove part (a), lemma 1 shows that Ũ
.n/

α .β0/ is a square integrable martingale adapted to F̃ .n/

α =Ft+αn, ,
the σ-algebra of events before t+αn,. Since it depends only on values at jump times, the quadratic variation
of Ũ

.n/
.β0/ at time α is equal to the quadratic variation of U.β0/ at time t+αn,. Therefore, since quadratic

and predictable variation have the same limit when it exists (Rebolledo (1980), proposition 1), assumption
2 implies that 〈.1=

√
n/Ũ

.n/
.β0/〉α →P Σα.β0/: Lemma 2 in turn verifies that .1=

√
n/Ũ

.n/
.β0/ satisfies a

Lindeberg condition necessary for the application of Rebolledo’s (1980) martingale central limit theorem.
Thus the process converges in distribution to a Gaussian process with covariance function Σα.β0/ as
claimed.

To prove part (b), recalling that Mt.i/ = Nt.i/ −Λt .i/, combine equations (5b) and (12) to obtain the
relationship

∑
i

∫ t+αn,

0
Vs.β0, i/dMs.i/= It+αn,.β0/−〈Ũ.n/

.β0/〉α: .14/

When α∈ [0, 1], a repeated application of the triangle inequality to
∥∥∥∥

1
n

It+αn,.β̂n/− 1
n

{It+αn,.β0/− It+αn,.β0/}−Σα.β0/

∥∥∥∥

using relationship (14) yields
∥∥∥∥

1
n

It+αn,.β̂n/−Σα.β0/

∥∥∥∥!
∥∥∥∥

1
n

∑
i

∫ t+αn,

0
{Vs.β̂n, i/−Vs.β0, i/}dNs.i/

∥∥∥∥

+
∥∥∥∥

1
n

∑
i

∫ t+αn,

0
Vs.β0, i/dMs.i/

∥∥∥∥+
∥∥∥∥

1
n

∑
i

∫ t+αn,

0
Vs.β0, i/dΛs.i/−Σα.β0/

∥∥∥∥ :

We show that all three terms converge to 0 in probability. The first term above is uniformly bounded by
supn′ , i ‖Vtn′ .β̂n, i/ − Vtn′ .β0, i/‖, which converges to 0 since β̂n →P β0 by hypothesis of the theorem and
{Vtn′ .·, i/} is an equicontinuous family by assumption 4. Lemma 3 proves, as a consequence of assumption
3 and Lenglart’s (1977) inequality, that the second term converges to 0 uniformly in α. The third term
converges to 0 by assumption 2, thereby concluding the proof.

B.2. Supporting lemmas for theorem 1

Lemma 1. Using the notation of theorem 1, under assumption 1 the process Ũ
.n/

α .β0/ from equation (13)
is a square integrable martingale adapted to F̃ .n/

α =Ft+αn, :

Proof. The conditional expectation property holds provided that E[Utn .β0/|Ftn−1 ] = Utn−1 .β0/: Define
K = supt, i,j‖xt.i, j/‖. Note that ‖Ht.i, j/‖!2K. Thus,

‖Ut∧tn .β0/‖!2K.Nt∧tn +Λt∧tn /,
E[sup

t
‖Ut∧tn .β0/‖2]!8E[K2]1=2 .E[N2

tn
]+E[Λ2

tn
]/1=2:

By assumption 1, E[K2] is finite and, by construction, Ntn is bounded. Since Nt∧tn is a counting process,
E[Λ2

tn
] is finite, also (this follows from results in section 2.3 of Fleming and Harrington (1991)). Thus,

Ut∧tn .β0/ is uniformly integrable. The optional sampling theorem now applies to give the conditional ex-
pectation property of Ũ

.n/
.β0/. For square integrability, note that sup1!m!n E‖Utm‖2 !E[supt ‖Ut∧tn .β0/‖2]:



Directed Interaction Networks 845

Lemma 2. Using the notation of theorem 1, under assumption 1, the Lindeberg condition for Rebolledo’s
(1980) central limit theorem is satisfied: for any positive ",

1
n

∑
i,j

∫ tn

0
‖Hs.i, j/‖2 1{‖Hs.i, j/‖>

√
n"}dΛs.i, j/

P→0:

Proof. With K = supt, i,j ‖xt.i, j/‖ as above, the integral is bounded by 4K2 1{n−1=2K>"=2}Λtn =n: Since
E[K2] < ∞ by assumption 1, the first term converges to 0 in probability. Since E[Λtn ] = E[Ntn ] = n, the
product of the two also converges to 0 in probability. Thus, the Lindeberg condition is satisfied.

Lemma 3. Using the notation of theorem 1, under assumptions 1 and 3 we have that
∥∥∥∥

1
n

∑
i

∫ t+αn,

0
Vs.β0, i/dMs.i/

∥∥∥∥
P→0

uniformly in α.
Proof. Lenglart’s (1977) inequality and assumption 3 imply that, for any positive ρ and δ,

P

{
sup

t∈[0, tn ]

∥∥∥∥
1
n

∑
i

∫ t

0
Vs.β0, i/dMs.i/

∥∥∥∥"ρ

}
! δ

ρ2
+P

{
1
n2

∑
i

∫ tn

0
‖Vs.β0, i/‖2 dΛs.i/" δ

}

(see Fleming and Harrington (1991), corollary 3.4.1) for a related proof). As in the proof of lemma 1, set
K = supt, i,j ‖xt.i, j/‖. The sum is bounded by .16K4=n/Λtn =n. Since n−1=2K2 →P 0 by assumption 1 and
E[Λtn ]=n, the right-hand side of the inequality converges to δ=ρ2. Since δ is arbitrary, the right-hand side
must converge to 0.

B.3. Proof of theorem 2
We follow Haberman’s (1977) approach to proving consistency, which relies on Kantorovich’s (1952)
analysis of Newton’s method. Tapia (1971) has given an elementary proof of the Kantorovich theorem.
We state a weak form of the result as a lemma.

Lemma 4 (Kantorovich theorem). Let P.x/=0 be a general system of non-linear equations, where P is a
map between two Banach spaces. Let P ′.x/ denote the Jacobian (Fréchet differential) of P at x, assumed
to exist in D0, a convex open neighbourhood of x0. Assume that

(a) ‖P ′.x0/
−1‖!B,

(b) ‖P ′.x0/
−1P.x0/‖!η,

(c) ‖P ′.x/−P ′.y/‖!K‖x−y‖, for all x and y in D0,

with h=BKη ! 1
2 .

Let ΩÅ ={x :‖x−x0‖!2η}. If ΩÅ ⊂D0, then the Newton iterates, xk+1 =xk −P ′.xk/
−1 P.xk/, are well

defined, remain in ΩÅ and converge to xÅ in ΩÅ such that P.xÅ/=0. In addition,

‖xÅ −xk‖! η

h

.2h/2k

2k
, k =0, 1, 2, . . .:

B.3.1. Proof of theorem 2
Set Ut.·/ and It.·/ to be the gradient and negative Hessian of the log-partial-likelihood, as defined in equa-
tions (5a) and (5b). Since It.β/ is a sum of rank 1 matrices with positive weights, it is positive semidefinite,
and log{PLt .·/} is a concave function. By the assumption that the smallest eigenvalue of Σ1.·/ is bounded
away from 0 in a neighbourhood of β0, for n sufficiently large, if log{PLt .·/} has a local maximum in that
neighbourhood then it must be the unique global maximum.

We find the local maximum by applying Newton’s method to the gradient of .1=n/ log{PLtn .·/} taking
β0 as the initial iterate. Define

Zn =−
{

1
n

Itn .β0/

}−1 1
n

Utn .β0/:

The first Newton iterate, βn,1, is equal to β0 −Zn. Part (b) of theorem 1 and the assumptions of theorem 2
imply that {.1=n/Itn .β0/}−1 exists for n sufficiently large, so that Zn is well defined. Moreover, part (a) of
theorem 1 and Slutsky’s theorem imply that Zn →P 0 and

√
nZn →d N{0, Σ1.β0/

−1}.
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Now we may apply Kantorovich’s theorem to bound ‖β̂n −β0‖ and ‖β̂n −βn,1‖ as follows. By assump-
tion, there is a neighbourhood of β0, say D0, and finite K and B, such that ‖.1=n/Itn .β/− .1=n/Itn .β′/‖!
K‖β −β′‖ and ‖.1=n/Itn .β0/

−1‖!B for β, β′ ∈D0. Define ηn =‖Zn‖ and hn =BKηn, noting that hn and ηn

are size OP .n−1=2/. Thus, for n sufficiently large,

(a) ‖β̂n −β0‖!2ηn →P 0,
(b) ‖β̂n − .β0 −Zn/‖√n!2

√
nηnhn →P 0:

Thus, β̂n →P β0, and .β̂n −β0/
√

n and Zn

√
n converge weakly to the same limit.

Appendix C: Results from Section 4

C.1. Proof of theorem 3
When J ⊆Jt .i/, set Xt.i, J/=Σj∈J xt.i, j/ and wt .β, i, J/= exp{βT Xt.i, J/}: As a slight abuse of notation,
when j is an element of Jt .i/, take ‘wt .β, i, j/’ to mean wt .β, i, {j}/. Define weights

Wt.β, i; L/=
∑

J⊆Jt .i/,
|J |=L

wt .β, i, J/,

W̃ t.β, i; L/=
{ ∑

j∈Jt .i/

wt .β, i, j/

}L

,

and note that the approximation error in log{P̃Lt .β/} comes from replacing W with W̃ .
The gradients of the weights are

Et.β, i; L/=∇[log{Wt.β, i; L/}]= 1
Wt.β, i; L/

∑
J⊆Jt .i/,

|J |=L

wt .i, J/Xt.i, J/,

Ẽt.β, i; L/=∇[log{W̃ t.β, i; L/}]=L

∑
j∈Jt .i/

wt .β, i, j/xt.i, j/

∑
j∈Jt .i/

wt .β, i, j/
:

The second is the expectation of ΣL
l=1 xt.i, jl/ when j1, . . . , jL are drawn independently and identically

from Jt .i/ with weights wt .β, i, ·/; the first is the same expectation, conditional on the event that j1, . . . , jL

are all unique. Let P̃t,β, i;L and Pt,β, i;L denote the two probability laws for j1, : : : , jL, and let Ẽt,β, i;L and
Et,β, i;L denote expectations with respect to them, so that Et.β, i; L/=Et,β, i;L[ΣL

l=1 xt.i, jl/] and Ẽt.β, i; L/=
Ẽt,β, i;L[ΣL

l=1 xt.i, jl/]:
The bound on ∇[log{PLtn .β/}] − ∇[log{P̃Ltn .β/}] derives from a bound on Et.β, i; L/ − Ẽt.β, i; L/:

Write

Et.β, i; L/− Ẽt.β, i; L/=Et,β, i;L

[
L∑

l=1
xt.i, jl/

]
− Ẽt,β, i;L

[
L∑

l=1
xt.i, jl/

]
:

We define probability law PÅ
t,β, i;L and associated random variables j1, : : : , jL and |̃1,. . . , |̃L, such that

marginally j1, : : : , jL are distributed according to Pt,β, i;L and |̃1, : : : , |̃L are distributed according to P̃t,β, i;L,
but the variables are coupled to have non-trivial chance of agreeing. Then,

‖Et.β, i; L/− Ẽt.β, i; L/‖=
∥∥∥∥EÅ

t,β, i;L

[
L∑

l=1
xt.i, jl/−

L∑
l=1

xt.i, |̃l/

]∥∥∥∥

!2L

[
sup

j∈Jt .i/

‖xt.i, j/‖
]
PÅ

t,β, i;L{.j1, : : : , jL/ %= .|̃1, : : : , |̃L/}:

The coupling is as follows.

(a) Draw .|̃1, : : : , |̃L/ according to P̃t,β, i;L.
(b) If .|̃1, : : : , |̃L/ are all unique, set .j1, : : : , jL/= .|̃1, : : : , |̃L/; otherwise draw .j1, : : : , jL/ independently

according to Pt,β, i;L.



Directed Interaction Networks 847

With K = supj∈Jt .i/
‖xt.i, j/‖, lemma 5 shows that

PÅ
t,β, i;L{.j1, : : : , jL/ %= .|̃1, : : : , |̃L/}!

(
L
2

) exp.4K‖β‖/

|Jt .i/|
:

The resulting bound on ‖∇[log{PLt .β/}]−∇[log{P̃Lt .β/}]‖ now follows by expressing

∇[log{P̃Lt .β/}]−∇[log{PLt .β/}]=
∑

tm!t

Etm.β, im; |Jm|/− Ẽtm.β, im; |Jm|/:

Using

‖Et.β, i; L/− Ẽt.β, i; L/‖!KL2.L−1/
exp.4K‖β‖/

|Jt .i/|
,

we obtain

‖∇[log{P̃Lt .β/}]−∇[log{PLt .β/}]‖!K exp.4K‖β‖/
∑

tm!t

|Jm|2.|Jm|−1/

|Jtm .im/|
:

We obtain the final bound for the gradients by replacing the numerators of the summands with supm |Jm|.
Using the same methods, lemma 6 derives the bound on the difference in Hessians.

C.2. Supporting lemmas for theorem 2

Lemma 5. Using the notation and assumptions of theorem 3,

PÅ
t,β, i;L{.j1, : : : , jL/ %= .|̃1, : : : , |̃L/}!

(
L
2

)exp.4K‖β‖/

|Jt .i/|
,

where K = supt ‖xt.i, j/‖.

Proof. The left-hand side is bounded by the probability that the samples |̃1,. . . , |̃L are all unique, which
can be bounded by

∑
k<l

PÅ
t,β, i;L{|̃k = |̃l}=

(
L
2

) ∑
j∈Jt .i/

{
wt .β, i, j/∑

j′∈Jt .i/

wt .β, i, j′/

}2

:

Note that exp.−K‖β‖/!wt .β, i, j/! exp.K‖β‖/, so

∑
j∈Jt .i/

{
wt .β, i, j/∑

j′∈Jt .i/

wt .β, i, j′/

}2

! exp.4K‖β‖/

|Jt .i/|
:

Lemma 6. Using the notation and assumptions of theorem 3,

‖∇2[log{P̃Lt .β/}]−∇2[log{PLt .β/}]‖!2K2 exp.4K‖β‖/
∑

tm!t

|Jm|3.|Jm|−1/

|Jtm .im/|
:

Proof. The argument is similar to the bound on the difference in gradients in the proof of theorem 3.
The Hessians of the weights are

Vt.β, i; L/=∇2[log{Wt.β, i; L/}]= 1
Wt.β, i; L/

∑
J⊆Jt .i/,

|J |=L

wt .β, i, J/.Xt.i, J/−Et.β, i; L//⊗2,

Ṽ t.β, i; L/=∇2[log{W̃ t.β, i; L/}]=L

∑
j∈Jt .i/

wt .β, i, j/.xt.i, j/− .1=L/Ẽt.β, i; L//⊗2

∑
j∈Jt .i/

wt .β, i, j/
:

The first is the covariance matrix of ΣL
l=1xt.i, jl/ under Pt,β, i;L; the second is the covariance matrix of the

same quantity under P̃t,β, i;L. The result follows in the same manner as in the proof of theorem 3. The
relevant intermediate bound is
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‖Vt.β, i; L/− Ṽ t.β, i; L/‖!2K2L3.L−1/
exp.4K‖β‖/

|Jt .i/|
:

C.3. Proof of theorem 4
We know that Newton’s method applied to .1=n/ log{P̃Ltn .·/} converges to β̃n after sufficiently many
iterations. We employ β̂n as the initial iterate and use the Kantorovich theorem (lemma 4) to bound
‖β̃n − β̂n‖.

In the notation of lemma 4, P.·/ is the gradient of .1=n/ log{P̃Ltn .·/} and P ′.·/ is its Hessian. The con-
ditions of theorem 4 imply that assumptions (a) and (c) hold uniformly in n for some finite B and K.
Set

ηn =
∥∥∥∥

(
∇2

[
1
n

log{P̃Ltn .β̂n/}
])−1

∇
[

1
n

log{P̃Ltn .β̂n/}
]∥∥∥∥

and set hn = BKηn. Since ∇[log{PLtn .β̂n/}] = 0, theorem 3 and the boundedness of the inverse Hessian
imply that ηn =OP .Gn=n/. Therefore, for n sufficiently large,

‖β̃n − β̂n‖! ηn

h

.2h/20

20
=2ηn =OP

(
Gn

n

)
:
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