Binomial and Poisson Random Variables - Solutions

STAT-UB. 0103 - Statistics for Business Control and Regression Models

Binomial random variables

1. A certain coin has a 25% of landing heads, and a 75% chance of landing tails.
(a) If you flip the coin 4 times, what is the chance of getting exactly 2 heads?

Solution: There are 6 outcomes whith exactly 2 heads:
H HTT, HTHT, HTTH, TH HT, THTH, TTH H.
By independence, each of these outcomes has probability $(.25)^{2}(.75)^{2}$. Thus, $\mathrm{P}($ exactly 2 heads out of 4 flips $)=6(.25)^{2}(.75)^{2}$.
(b) If you flip the coin 10 times, what is the chance of getting exactly 2 heads?

Solution: Rather than list all outcomes, we will use a counting rule. There are $\binom{10}{2}$ ways of choosing the positions for the two heads; each of these outcomes has probability $(.25)^{2}(.75)^{8}$. Thus,

$$
\mathrm{P}(\text { exactly } 2 \text { heads out of } 10 \mathrm{flips})=\binom{10}{2}(.25)^{2}(.75)^{8}
$$

2. Suppose that you are rolling a die eight times. Find the probability that the face with two spots comes up exactly twice.

Solution: Let X be the number of times that we get the face with two spots. This is a binomial random variable with $n=8$ and $p=\frac{1}{6}$. We compute

$$
\begin{aligned}
P(X=2) & =\binom{n}{2} p^{2}(1-p)^{n-2} \\
& =\binom{8}{2}\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{6} \\
& \approx 0.26 .
\end{aligned}
$$

3. The probability is 0.04 that a person reached on a "cold call" by a telemarketer will make a purchase. If the telemarketer calls 40 people, what is the probability that at least one sale with result?

Solution: Let X be the number of sales. This is a binomial random variable with $n=40$ and $p=0.04$. Thus,

$$
\begin{aligned}
P(X \geq 1) & =1-P(X<1) \\
& =1-P(X=0) \\
& =1-\binom{n}{0} p^{0}(1-p)^{n-0} \\
& =1-(0.96)^{40} \\
& \approx .805
\end{aligned}
$$

4. A new restaurant opening in Greenwich village has a 30% chance of survival during their first year. If 16 restaurants open this year, find the probability that
(a) exactly 3 restaurants survive.

Solution: Let X be the number that survive. This is a binomial random variable with $n=16$ and $p=0.3$. Therefore,

$$
\begin{aligned}
P(X=3) & \left.=\binom{16}{3}(0.3)^{3}(1-0.3)^{(} 16-3\right) \\
& =.146
\end{aligned}
$$

(b) fewer than 3 restaurants survive.

Solution:

$$
\begin{aligned}
P(X<3) & =\binom{16}{0}(0.3)^{0}(0.7)^{16}+\binom{16}{1}(0.3)^{1}(0.7)^{15}+\binom{16}{2}(0.3)^{2}(0.7)^{14} \\
& =.099 .
\end{aligned}
$$

(c) more than 3 restaurants survive.

Solution:

$$
\begin{aligned}
P(X>3) & =1-P(X \leq 3) \\
& =1-(.099+.146) \\
& =.754 .
\end{aligned}
$$

Poisson random variables

5. The number of calls arriving at the Swampside Police Station follows a Poisson distribution with rate $4.6 /$ hour. What is the probability that exactly six calls will come between 8:00 p.m. and 9:00 p.m.?

Solution: Let X be the number of calls that arrive between 8:00 p.m. and 9:00 p.m. This is a Poisson random variable with mean

$$
\lambda=E(X)=(4.6 \text { calls } / \text { hour })(1 \text { hour })=4.6 \text { calls } .
$$

Thus,

$$
P(X=6)=\frac{\lambda^{6}}{6!} e^{-\lambda}=\frac{(4.6)^{6}}{6!} e^{-4.6} .
$$

6. In the station from Problem 5, find the probability that exactly 7 calls will come between 9:00 p.m. and 10:30 p.m.

Solution: Let X be the number of calls that arrive between 9:00 p.m. and 10:30 p.m. This is a Poisson random variable with mean

$$
\lambda=E(X)=(4.6 \text { calls } / \text { hour })(1.5 \text { hours })=6.9 \text { calls } .
$$

Thus,

$$
P(X=7)=\frac{\lambda^{7}}{7!} e^{-\lambda}=\frac{(6.9)^{7}}{7!} e^{-6.9}
$$

7. Car accidents occur at a particular intersection in the city at a rate of about $2 /$ year. Estimate the probability of no accidents occurring in a 6 -month period.

Solution: Let X be the number of car accidents. This is Poisson random variable with mean

$$
\lambda=E(X)=(2 \text { accidents } / \text { year })(0.5 \text { years })=1 \text { accident } .
$$

Thus,

$$
P(X=0)=\frac{\lambda^{0}}{0!} e^{-\lambda}=e^{-1} \approx .368
$$

8. In the intersection from Problem 7, estimate the probability of two or more accidents occurring in a year.

Solution: Let X be the number of car accidents. This is Poisson random variable with mean

$$
\lambda=E(X)=(2 \text { accidents } / \text { year })(1.0 \text { years })=2 \text { accident } .
$$

Thus,

$$
\begin{aligned}
P(X \geq 2) & =1-P(X<2) \\
& =1-\left[\frac{\lambda^{0}}{0!} e^{-\lambda}+\frac{\lambda^{1}}{1!} e^{-\lambda}\right] \\
& \approx .594 .
\end{aligned}
$$

Empirical rule with Binomial and Poisson random variables

9. If X is a Poisson random variable with $\lambda=225$, would it be unusual to get a value of X which is less than 190 ?

Solution: Set

$$
\begin{gathered}
\mu=E(X)=\lambda=255 \\
\sigma=\operatorname{sd}(X)=\sqrt{\lambda}=15
\end{gathered}
$$

Define z to be the number of standard deviations above the mean that 190 is, i.e.

$$
190=\mu+\sigma z .
$$

Then,

$$
z=\frac{190-\mu}{\sigma}=\frac{-35}{15} \approx-2.33 .
$$

A value of X which is below 190 is more than 2.33 standard deviations below the mean of X. The empirical rule tells us that observations more than 2 standard deviations away from the mean are unusual (they occur less than 95% of the time). Therefore, values of X below 190 are unusual.
10. The probability is 0.10 that a person reached on a "cold call" by a telemarketer will make a purchase. If the telemarketer calls 200 people, would it be unusual for them to get 30 purchases?

Solution: Let X be the number of purchases. This is a Binomial random variable with size $n=200$ and success probability $p=0.10$. Thus, the expectation and standard deviation of X are

$$
\begin{aligned}
& \mu=n p=(200)(.10)=20 \\
& \sigma=\sqrt{n p(1-p)}=\sqrt{(200)(.10)(.90)}=\sqrt{18} \approx 4.2
\end{aligned}
$$

Since $n p \geq 15$ and $n p(1-p) \geq 15$, the distribution of X can be approximated by the empirical rule. Using the empirical rule approximation, 95% of the time, X will be in the range $\mu \pm 2 \sigma$, or (11.6, 28.4), and 99.7% of the time, X will be in the range $\mu \pm 3 \sigma$, or (7.4, 32.6). We would see $X \geq 30$ less than 5% of the time. It would be unusual to see $X=30$, but not highly unusual.

