The Central Limit Theorem

1. Consider the population of all Fortune 500 CEOs and their salaries. Suppose that the mean salary (in millions of dollars) is $\mu = 20$, and the standard deviation of the salaries is $\sigma = 5$. You sample 50 CEOs and find their salaries.

(a) Draw a histogram of what you think the population looks like.

(b) Consider the sample mean \bar{X} to be a random variable. What is the expectation of \bar{X}?

Solution: $E[\bar{X}] = \mu = 20$.

(c) What is the standard deviation of \bar{X}?

Solution: $sd[\bar{X}] = \frac{\sigma}{\sqrt{n}} = \frac{5}{\sqrt{50}} \approx .707$.

(d) Draw a picture of what you think the PDF of \bar{X} looks like.

Solution: Normal with mean 20, standard deviation .707.
2. You draw a random sample of size $n = 64$ from a population with mean $\mu = 50$ and standard deviation $\sigma = 16$. From this, you compute the sample mean, \bar{X}.

(a) What are the expectation and standard deviation of \bar{X}?

Solution:

$$E[\bar{X}] = \mu = 50,$$
$$sd[\bar{X}] = \frac{\sigma}{\sqrt{n}} = \frac{16}{\sqrt{64}} = 2.$$

(b) Approximately what is the probability that the sample mean is above 54?

Solution: The sample mean has expectation 50 and standard deviation 2. By the central limit theorem, the sample mean is approximately normally distributed. Thus, by the empirical rule, there is roughly a 2.5% chance of being above 54 (2 standard deviations above the mean).

(c) Do you need any additional assumptions for part (c) to be true?

Solution: No. Since the sample size is large ($n \geq 30$), the central limit theorem applies.

3. You draw a random sample of size $n = 16$ from a population with mean $\mu = 100$ and standard deviation $\sigma = 20$. From this, you compute the sample mean, \bar{X}.

(a) What are the expectation and standard deviation of \bar{X}?

Solution:

$$E[\bar{X}] = \mu = 100,$$
$$sd[\bar{X}] = \frac{\sigma}{\sqrt{n}} = \frac{20}{\sqrt{16}} = 5.$$

(b) Approximately what is the probability that the sample mean is between 95 and 105?

Solution: The sample mean has expectation 100 and standard deviation 5. If it is approximately normal, then we can use the empirical rule to say that there is a 68% of being between 95 and 105 (within one standard deviation of its expectation).

(c) Do you need any additional assumptions for part (c) to be true?

Solution: Yes, we need to assume that the population is normal. The sample size is small ($n < 30$), so the central limit theorem may not be in force.