Introduction to Confidence Intervals – Solutions STAT-UB.0103 – Statistics for Business Control and Regression Models

The Central Limit Theorem (Review)

- 1. You draw a random sample of size n = 64 from a population with mean $\mu = 50$ and standard deviation $\sigma = 16$. From this, you compute the sample mean, \bar{X} .
 - (a) What are the expectation and standard deviation of \bar{X} ?

Solution:

$$\begin{split} \mathbf{E}[\bar{X}] &= \mu = 50,\\ \mathbf{sd}[\bar{X}] &= \frac{\sigma}{\sqrt{n}} = \frac{16}{\sqrt{64}} = 2. \end{split}$$

(b) Approximately what is the probability that the sample mean is above 54?

Solution: The sample mean has expectation 50 and standard deviation 2. By the central limit theorem, the sample mean is approximately normally distributed. Thus, by the empirical rule, there is roughly a 2.5% chance of being above 54 (2 standard deviations above the mean).

(c) Do you need any additional assumptions for part (c) to be true?

Solution: No. Since the sample size is large $(n \ge 30)$, the central limit theorem applies.

- 2. You draw a random sample of size n = 16 from a population with mean $\mu = 100$ and standard deviation $\sigma = 20$. From this, you compute the sample mean, \bar{X} .
 - (a) What are the expectation and standard deviation of \bar{X} ?

Solution:

$$E[X] = \mu = 100,$$

$$sd[\bar{X}] = \frac{\sigma}{\sqrt{n}} = \frac{20}{\sqrt{16}} = 5$$

(b) Approximately what is the probability that the sample mean is between 95 and 105?

Solution: The sample mean has expectation 100 and standard deviation 5. If it is approximately normal, then we can use the empirical rule to say that there is a 68% of being between 95 and 105 (within one standard deviation of its expectation).

(c) Do you need any additional assumptions for part (c) to be true?

Solution: Yes, we need to assume that the population is normal. The sample size is small (n < 30), so the central limit theorem may not be in force.

Introduction to Confidence Intervals

- 3. Consider the following game. Population with mean μ and and known standard deviation $\sigma = 7$. I know μ , but you don't. You sample n = 49 observations from the population and compute the sample mean \bar{X} . Your goal is to guess the value of μ . Suppose you observe the sample mean $\bar{x} = 4.110$.
 - (a) If μ were equal to 4, would $\bar{x} = 4.110$ be typical? Take "typical" to mean "we would observe a value like this about 95% of the time."

Solution: The expectation of \bar{X} is μ ; the standard deviation of \bar{X} is

$$\operatorname{sd}(\bar{X}) = \frac{\sigma}{\sqrt{n}} = \frac{7}{\sqrt{49}} = 1.$$

The value $\bar{x} = 4.110$ is within 1 standard deviation of the mean.

(b) If μ were equal to 5, would $\bar{x} = 4.110$ be typical?

Solution: Yes, \bar{x} is within 2 standard deviation of the mean.

(c) If μ were equal to 10, would $\bar{x} = 4.110$ be typical?

Solution: No, X is over 5 standard deviations away from the mean.

(d) What is the largest value of μ for which a sample of $\bar{x} = 4.110$ would be considered typical?

Solution: 6.110

(e) What is the smallest value of μ for which a sample of $\bar{x} = 4.110$ would be considered typical?

Solution: 2.110

(f) What can you say about the random interval $(\bar{X} - 2, \bar{X} + 2)$?

Solution: There is a 95% that μ is in this interval.

(g) What can you say about the observed interval $(\bar{x} - 2, \bar{x} + 2)$, where x = 4.110?

Solution: We cannot use probability to talk about this interval, since there is no randomness involved. All we can say is that we have 95% *confidence* that μ is in this interval. (If we repeated the sampling processing many times, constructing a new confidence interval each time, then 95% of the confidence intervals would contain μ .)

Confidence Intervals for a Population Mean (Known Variance)

- 4. A random sample of n measurements was selected from a population with unknown mean μ and known standard deviation σ . Calculate a 95% confidence interval for μ for each of the following situations:
 - (a) $n = 49, \, \bar{x} = 28, \, \sigma = 28$

Solution: The formula for the 95% confidence interval is $\bar{x} \pm 2 \frac{\sigma}{\sqrt{n}}$. If we substitute the values of the problem, we get $28 \pm 2 \frac{28}{\sqrt{49}}$, i.e. 28 ± 8 , or (20, 36).

(b)
$$n = 36, \bar{x} = 12, \sigma = 18$$

Solution: $12 \pm 2\frac{18}{\sqrt{36}}$, i.e.

 $12 \pm 6.$

(c) $n = 100, \bar{x} = 125, \sigma = 50$

Solution: $125 \pm 2\frac{50}{\sqrt{100}}$, i.e.

 $125 \pm 10.$

(d) Is the assumption that the underlying population of measurements is normally distributed necessary to ensure the validity of the confidence intervals in parts (a)–(c)?

Solution: No. Since the sample sizes are large $(n \ge 30)$, the central limit theorem guarantees that \bar{x} is approximately normal, so the confidence intervals are valid.

5. Complete the previous problem, with 99% confidence intervals instead of 95% confidence intervals.

Solution: Instead of using $\bar{x} \pm 2\frac{\sigma}{\sqrt{n}}$, the confidence interval is

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}},$$

where $\alpha = .01$. In this case, $z_{\alpha/2} = 2.576$. The confidence intervals are:

(a) $28 \pm 2.576 \frac{28}{\sqrt{49}}$, i.e. (b) $12 \pm 2.576 \frac{18}{\sqrt{36}}$, i.e. (c) $125 \pm 2.576 \frac{50}{\sqrt{100}}$, 125 ± 12.88 .

6. Find the values of α and $z_{\alpha/2}$ for computing 99.9% confidence intervals. (If you don't have a z table, draw a bell curve with a shaded region showing the relationship between α and $z_{\alpha/2}$).

Solution: For a 99.9% confidence interval, $\alpha = .001$, so $z_{\alpha/2} = z_{.0005} = 3.291$.

7. Find the values of α and $z_{\alpha/2}$ for computing 80% confidence intervals.

Solution: For an 80% confidence interval, $\alpha = .20$, so $z_{\alpha/2} = z_{.10} = 1.282$.