The Central Limit Theorem (Review)

1. You draw a random sample of size $n=64$ from a population with mean $\mu=50$ and standard deviation $\sigma=16$. From this, you compute the sample mean, \bar{X}.
(a) What are the expectation and standard deviation of \bar{X} ?

Solution:

$$
\begin{aligned}
\mathrm{E}[\bar{X}] & =\mu=50, \\
\operatorname{sd}[\bar{X}] & =\frac{\sigma}{\sqrt{n}}=\frac{16}{\sqrt{64}}=2 .
\end{aligned}
$$

(b) Approximately what is the probability that the sample mean is above 54 ?

Solution: The sample mean has expectation 50 and standard deviation 2. By the central limit theorem, the sample mean is approximately normally distributed. Thus, by the empirical rule, there is roughly a 2.5% chance of being above 54 (2 standard deviations above the mean).
(c) Do you need any additional assumptions for part (c) to be true?

Solution: No. Since the sample size is large ($n \geq 30$), the central limit theorem applies.
2. You draw a random sample of size $n=16$ from a population with mean $\mu=100$ and standard deviation $\sigma=20$. From this, you compute the sample mean, \bar{X}.
(a) What are the expectation and standard deviation of \bar{X} ?

Solution:

$$
\begin{aligned}
\mathrm{E}[\bar{X}] & =\mu=100, \\
\operatorname{sd}[\bar{X}] & =\frac{\sigma}{\sqrt{n}}=\frac{20}{\sqrt{16}}=5 .
\end{aligned}
$$

(b) Approximately what is the probability that the sample mean is between 95 and $105 ?$

Solution: The sample mean has expectation 100 and standard deviation 5. If it is approximately normal, then we can use the empirical rule to say that there is a 68% of being between 95 and 105 (within one standard deviation of its expecation).
(c) Do you need any additional assumptions for part (c) to be true?

Solution: Yes, we need to assume that the population is normal. The sample size is small ($n<30$), so the central limit theorem may not be in force.

Introduction to Confidence Intervals

3. Consider the following game. Population with mean μ and and known standard deviation $\sigma=7$. I know μ, but you don't. You sample $n=49$ observations from the population and compute the sample mean \bar{X}. Your goal is to guess the value of μ. Suppose you observe the sample mean $\bar{x}=4.110$.
(a) If μ were equal to 4 , would $\bar{x}=4.110$ be typical? Take "typical" to mean "we would observe a value like this about 95% of the time."

Solution: The expectation of \bar{X} is μ; the standard deviation of \bar{X} is

$$
\operatorname{sd}(\bar{X})=\frac{\sigma}{\sqrt{n}}=\frac{7}{\sqrt{49}}=1 .
$$

The value $\bar{x}=4.110$ is within 1 standard deviation of the mean.
(b) If μ were equal to 5 , would $\bar{x}=4.110$ be typical?

Solution: Yes, \bar{x} is within 2 standard deviation of the mean.
(c) If μ were equal to 10 , would $\bar{x}=4.110$ be typical?

Solution: No, X is over 5 standard deviations away from the mean.
(d) What is the largest value of μ for which a sample of $\bar{x}=4.110$ would be considered typical?

Solution: 6.110
(e) What is the smallest value of μ for which a sample of $\bar{x}=4.110$ would be considered typical?

Solution: 2.110
(f) What can you say about the random interval ($\bar{X}-2, \bar{X}+2)$?

Solution: There is a 95% that μ is in this interval.
(g) What can you say about the observed interval $(\bar{x}-2, \bar{x}+2)$, where $x=4.110$?

Solution: We cannot use probability to talk about this interval, since there is no randomness involved. All we can say is that we have 95% confidence that μ is in this interval. (If we repeated the sampling processing many times, constructing a new confidence interval each time, then 95% of the confidence intervals would contain μ.)

Confidence Intervals for a Population Mean (Known Variance)

4. A random sample of n measurements was selected from a population with unknown mean μ and known standard deviation σ. Calculate a 95% confidence interval for μ for each of the following situations:
(a) $n=49, \bar{x}=28, \sigma=28$

Solution: The formula for the 95% confidence interval is

$$
\bar{x} \pm 2 \frac{\sigma}{\sqrt{n}} .
$$

If we substitute the values of the problem, we get $28 \pm 2 \frac{28}{\sqrt{49}}$, i.e.

$$
28 \pm 8
$$

or $(20,36)$.
(b) $n=36, \bar{x}=12, \sigma=18$

Solution: $12 \pm 2 \frac{18}{\sqrt{36}}$, i.e.

$$
12 \pm 6 .
$$

(c) $n=100, \bar{x}=125, \sigma=50$

Solution: $125 \pm 2 \frac{50}{\sqrt{100}}$, i.e.

$$
125 \pm 10 .
$$

(d) Is the assumption that the underlying population of measurements is normally distributed necessary to ensure the validity of the confidence intervals in parts (a)-(c)?

Solution: No. Since the sample sizes are large ($n \geq 30$), the central limit theorem guarantees that \bar{x} is approximately normal, so the confidence intervals are valid.
5. Complete the previous problem, with 99% confidence intervals instead of 95% confidence intervals.

Solution: Instead of using $\bar{x} \pm 2 \frac{\sigma}{\sqrt{n}}$, the confidence interval is

$$
\bar{x} \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}},
$$

where $\alpha=.01$. In this case, $z_{\alpha / 2}=2.576$. The confidence intervals are:
(a) $28 \pm 2.576 \frac{28}{\sqrt{49}}$, i.e.

$$
28 \pm 10.304
$$

(b) $12 \pm 2.576 \frac{18}{\sqrt{36}}$, i.e.

$$
12 \pm 7.728
$$

(c) $125 \pm 2.576 \frac{50}{\sqrt{100}}$,

$$
125 \pm 12.88
$$

6. Find the values of α and $z_{\alpha / 2}$ for computing 99.9% confidence intervals. (If you don't have a z table, draw a bell curve with a shaded region showing the relationship between α and $z_{\alpha / 2}$).

Solution: For a 99.9% confidence interval, $\alpha=.001$, so $z_{\alpha / 2}=z_{.0005}=3.291$.
7. Find the values of α and $z_{\alpha / 2}$ for computing 80% confidence intervals.

Solution: For an 80% confidence interval, $\alpha=.20$, so $z_{\alpha / 2}=z_{.10}=1.282$.

