Introduction to Confidence Intervals

STAT-UB. 0103 - Statistics for Business Control and Regression Models

The Central Limit Theorem (Review)

1. You draw a random sample of size $n=64$ from a population with mean $\mu=50$ and standard deviation $\sigma=16$. From this, you compute the sample mean, \bar{X}.
(a) What are the expectation and standard deviation of \bar{X} ?
(b) Approximately what is the probability that the sample mean is above 54 ?
(c) Do you need any additional assumptions for part (c) to be true?
2. You draw a random sample of size $n=16$ from a population with mean $\mu=100$ and standard deviation $\sigma=20$. From this, you compute the sample mean, \bar{X}.
(a) What are the expectation and standard deviation of \bar{X} ?
(b) Approximately what is the probability that the sample mean is between 95 and 105 ?
(c) Do you need any additional assumptions for part (c) to be true?

Introduction to Confidence Intervals

3. Consider the following game. Population with mean μ and and known standard deviation $\sigma=7$. I know μ, but you don't. You sample $n=49$ observations from the population and compute the sample mean \bar{X}. Your goal is to guess the value of μ. Suppose you observe the sample mean $\bar{x}=4.110$.
(a) If μ were equal to 4 , would $\bar{x}=4.110$ be typical? Take "typical" to mean "we would observe a value like this about 95% of the time."
(b) If μ were equal to 5 , would $\bar{x}=4.110$ be typical?
(c) If μ were equal to 10 , would $\bar{x}=4.110$ be typical?
(d) What is the largest value of μ for which a sample of $\bar{x}=4.110$ would be considered typical?
(e) What is the smallest value of μ for which a sample of $\bar{x}=4.110$ would be considered typical?
(f) What can you say about the random interval $(\bar{X}-2, \bar{X}+2)$?
(g) What can you say about the observed interval $(\bar{x}-2, \bar{x}+2)$, where $x=4.110$?

Confidence Intervals for a Population Mean (Known Variance)

4. A random sample of n measurements was selected from a population with unknown mean μ and known standard deviation σ. Calculate a 95% confidence interval for μ for each of the following situations:
(a) $n=49, \bar{x}=28, \sigma=28$
(b) $n=36, \bar{x}=12, \sigma=18$
(c) $n=100, \bar{x}=125, \sigma=50$
(d) Is the assumption that the underlying population of measurements is normally distributed necessary to ensure the validity of the confidence intervals in parts (a)-(c)?
5. Complete the previous problem, with 99% confidence intervals instead of 95% confidence intervals.
6. Find the values of α and $z_{\alpha / 2}$ for computing 99.9% confidence intervals. (If you don't have a z table, draw a bell curve with a shaded region showing the relationship between α and $z_{\alpha / 2}$).
7. Find the values of α and $z_{\alpha / 2}$ for computing 80% confidence intervals.
