Standard Deviation and The Empirical Rule

1. Fifty-seven respondents to the class survey reported their SAT scores. The mean score was 2160 , and the standard deviation was 140 . What can you say about the range of scores reported? Assume that the distribution of reported scores is symmetric and mound-shaped.

Solution: We can use the empirical rule to make the following statements:

- For approximately 68% respondents, reported score is between 2020 and 2300 .
- For approximately 95% respondents, reported score is between 1880 and 2440.
- For approximately 99.7% respondents, reported score is between 1740 and 2580 .

In fact the true percentages in those intervals are $73 \%, 96 \%$, and 98%. When the distribution of the data is symmetric and mound-shaped, the predictions from the empirical rule are usually only accurate for the 68% and 95% intervals.
One other point: it is impossible to get an SAT score above 2400, so we could report the ranges for 95% and for 99.7% as [1880, 2400] and [1740, 2400].
2. Of those students who reported high school GPAs measured on a 4-point scale, the mean value was 3.9 and the standard deviation was 0.2 .
(a) Complete the following statement with appropriate values for X and Y : "For those students whose high school GPAs were measured on a 4 -point scale, approximately 95% of the survey respondents reported values between X and Y."

Solution: $X=3.9-2 \times 0.2=3.5 ; Y=3.9+2 \times 0.2=4.3$.
(b) What assumptions do you need to make for the statement in (a) to be correct? Do you think these assumptions are plausible? How could you check this?

Solution: That the distribution of GPAs is symmetric and mound-shaped.
We could check this with a histogram. In fact, there is a slight skew to the right for the GPA data, but even with this skewness, there is reasonable agreement with the empirical rule: 76% of reported GPAs were between 3.7 and $4.1 ; 92 \%$ of reported GPAs were between 3.5 and $4.3 ; 98 \%$ of reported GPAs were between 3.3 and 4.5 .
3. Your company has an annual profit of $\$ 60 \mathrm{MM}$ with a standard deviation of $\$ 5 \mathrm{MM}$. Assume that the distribution of your annual profits is symmetric and mound-shaped.
(a) Would it be unusual for your company to have an annual profit of $\$ 52 \mathrm{MM}$?

Solution: No; 95% of the time, profits are between $\$ 50 \mathrm{MM}$ and $\$ 70 \mathrm{MM}$.
(b) Would it be unusual for your company to have an annual profit of $\$ 83 \mathrm{MM}$?

Solution: Yes; this would happen less than 99.7% of the time.

z-scores

4. Fifty-one respondents from the class survey reported an expected annual salary below $\$ 150 \mathrm{~K}$. The mean and standard deviation of these values (in $\$ 1 \mathrm{~K}$) was $\bar{x}=68$ and $s=13$. How many standard deviations above or below the mean are the following values?
(a) An expected starting salary of $\$ 80 \mathrm{~K}$ per year.

Solution: Let $x_{1}=80$ and let z_{1} be the number of standard deviations above of below the mean. Then,

$$
x_{1}=\bar{x}+s z_{1},
$$

so

$$
z_{1}=\frac{x_{1}-\bar{x}}{s}=\frac{80-68}{13}=0.9 .
$$

Thus, x_{1} is 0.9 standard deviations above the mean.
(b) An expected starting salary of $\$ 60 \mathrm{~K}$ per year.

Solution: Let $x_{2}=60$. Then,

$$
z_{2}=\frac{x_{2}-\bar{x}}{s}=\frac{60-68}{13}=-0.6 .
$$

Thus, x_{2} is 0.6 standard deviations below the mean.
(c) An expected starting salary of $\$ 250 \mathrm{~K}$ per year.

Solution: Let $x_{3}=250$. Then,

$$
z_{3}=\frac{x_{3}-\bar{x}}{s}=\frac{250-68}{13}=14 .
$$

Thus, x_{3} is 14 standard deviations above the mean.
5. In the previous problem, which of the values are unusual?

Solution: The value $x_{3}=250$ is unusual, since this is 14 standard deviations away from the mean. Typical values are within 2 or 3 standard deviations of the mean (here, "typical" means 95% or 99.7% of the time).

Boxplots

6. Here are the 35 reported expected starting salaries for the male survey respondents (in $\$ 1 \mathrm{~K}$ per year). Make a boxplot of the data.
$50,50,50,50,60,60,60,60,60,60,60,60,60,62.465,65,65,70,70,70,75,76,80,80,80,80,80,80,80,85,90,90,100,250,300$

7. Here are the 18 reported expected starting salaries for the female survey respondents. Make a boxplot of the data.
$40,45,54,60,60,60,60,60,65,67,70,70,70,70,80,80,85,100$

