Expectation and Variance
STAT-UB. 0103 - Statistics for Business Control and Regression Models

Random variables (review)

1. Let X be a random variable describing the number of cups of coffee a randomly-chosen NYU undergraduate drinks in a week. Suppose that there is a 10% chance that the student has one cup of coffee, 30% chance that the student has two cups of coffee, 40% chance that the student has 3 cups of coffee, and a 20% chance stat the student has four cups of coffee.
(a) Let $p(x)$ be the probability distribution function of X. Fill in the following table:

x	1	2	3	4
$p(x)$				

(b) Find $\mathrm{E}(X)$, the expectation of X.
(c) What is the interpretation of the expectation of X ?

Variance and Standard Deviation

2. This is a continuation of problem 1 .
(a) Find $\operatorname{var}(X)$ and $\operatorname{sd}(X)$, the variance and standard deviation of X.
(b) What is the interpretation of the standard deviation of X ?
3. Consider the following game:
4. You pay $\$ 6$ to pick a card from a standard 52 -card deck.
5. If the card is a diamond (\diamond), you get $\$ 22$; if the card is a heart (\bigcirc), you get $\$ 6$; otherwise, you get nothing.

Perform the following calculations to decide whether or not you would play this game.
(a) Let W be the random variable equal to the amount of money you win from playing the game. If you lose money, W will be negative. Find the PDF of W.
(b) What are your expected winnings? That is, what is μ, the expectation of W ?
(c) What is the standard deviation of W ?
(d) What are the interpretations of the expectation and standard deviation of W ?

Properties of Expectation and Variance

4. Affine Transformations. Let X be a random variable with expectation $\mu_{X}=2$ and standard deviation $\sigma_{X}=3$.
(a) What is the expectation of $5 X+2$?
(b) What is the standard deviation of $5 X+2$?
5. Sums of Independent Random Variables. Let X and Y be independent random variables with $\mu_{X}=1, \sigma_{X}=3, \mu_{Y}=-5, \sigma_{Y}=4$.
(a) What is $\mathrm{E}(X+Y)$?
(b) Find $\operatorname{var}(X+Y)$ and $\operatorname{sd}(X+Y)$.
6. Let X and Y be independent random variables with $\mu_{X}=-2, \sigma_{X}=1, \mu_{Y}=3, \sigma_{Y}=4$.
(a) Find the expectation and standard deviation of $-3 X+2$.
(b) Find the expectation and standard deviation of $X+Y$.
(c) Find the expectation and standard deviation of $-3 X+Y+2$.

Advanced Problems

7. Bernoulli random variable. Suppose you flip a biased coin that lands Heads with probability p and lands tails with probability $1-p$. Define the random variable

$$
X= \begin{cases}1 & \text { if the coin lands Heads; } \\ 0 & \text { if the coin lands Tails }\end{cases}
$$

This random variable is called a "Bernoulli random variable with success probability p."
(a) What is the PDF of X ?
(b) Find μ, the expectation of X
(c) Find σ^{2}, the variance of X.
8. Suppose you have a biased coin that lands Heads with probability p and lands Tails with probability $1-p$. You flip the coin 2 times. Let Y be the number of times the coin lands Heads.
(a) What is $\mathrm{E}(Y)$?
(b) What is $\operatorname{var}(Y)$?

Hint: $Y=X_{1}+X_{2}$, where X_{1} and X_{2} are independent Bernoulli random variables corresponding to the 2 coin flips. Use the answer to problem 7(c).
(c) Suppose instead that you flip the coin n times, and let Y count the number of Heads. What are the expectation and variance of Y ?
Hint: $Y=X_{1}+X_{2}+\cdots+X_{n}$.

