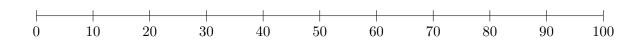

### Boxplots (cont.) and Transformations – Solutions STAT-UB.0103 – Statistics for Business Control and Regression Models


# **Boxplots**

1. Here are the 35 reported expected starting salaries for the male survey respondents (in \$1K per year). Make a boxplot of the data.



2. Here are the 18 reported expected starting salaries for the female survey respondents. Make a boxplot of the data.

40, 45, 54, 60, 60, 60, 60, 60, 65, 67, 70, 70, 70, 70, 80, 80, 85, 100



### Scaling Values

3. In the online class survey, 61 students report their social media usage in a typical week, in hours. The mean and sample standard deviation of the reported values are:

$$\bar{x} = 10.6 \text{ hours}$$

$$s = 10$$
 hours.

If we were to convert the reported social media usages from hours to minutes, what would be the new mean and sample standard deviation?

**Solution:** We convert from minutes to hours by multiplying by 60. Thus, the new mean and sample standard deviation would be

mean = 
$$60 \times 10.6 = 636$$
 minutes

and

std. dev. = 
$$|60| \times 10 = 600$$
 minutes.

4. Here is dataset X:

The mean and standard deviation of this dataset are

$$\bar{x} = 102.4$$

$$s_X = 3.9.$$

Suppose we construct another dataset, Y, by multiplying every item in X by 5:

That is,  $y_i = 5x_i$ .

(a) What is the mean of dataset Y?

**Solution:** We have that  $y_i = 5x_i$ . Thus,

$$\bar{y} = 5\bar{x} = 5 \cdot 102.4 = 512.$$

(b) What is the sample standard deviation of dataset Y?

Solution:

$$s_Y = |5| \cdot s_X = 5 \cdot 3.9 = 19.5.$$

## **Shifting Values**

5. Students filled out the online class survey between 17:18:28 ET on September 3 and 00:23:16 ET on September 4. The mean and standard deviation of the timestamps were

$$\bar{x} = 17:18:28 \text{ ET on September 3},$$
  
 $s = 4.3 \text{ hours}$ 

If we convert the times to Pacific Time (PT) by subtracting 3 hours from each value, what will be the mean and sample standard deviation?

**Solution:** The mean will be shifted by -3 hours: 14:18:28 PT on September 3; the standard deviation will be unchanged: 4.3 hours.

6. Consider a dataset X with n = 10 items:

$$3.0, -2.0, 2.0, 1.0, 2.5, 10.0, 1.5, 0.0, 8.0, -2.0.$$

The mean and sample standard deviation of dataset X are

$$\bar{x} = 2.4,$$

$$s_X = 3.9.$$

Suppose we construct a new dataset, Y, by adding 100 to every item in X:

That is,  $y_i = x_i + 100$ .

(a) What is the mean of dataset Y?

**Solution:** Shifted by 100:  $\bar{y} = 2.4 + 100 = 102.4$ .

(b) What is the sample standard deviation of dataset Y?

**Solution:** Unchanged:  $s_Y = 3.9$ .

## **Affine Transformations**

7. You have a dataset with n=500 values:  $x_1,x_2,\ldots,x_{500}$ . The mean value is  $\bar{x}=25$  and the sample standard deviation is  $s_X=4$ . You construct a new dataset  $y_1,y_2,\ldots,y_{500}$ , where

$$y_i = 3x_i + 7.$$

(a) What is the mean of the new dataset?

Solution:

$$\bar{y} = 3\bar{x} + 7 = 3 \cdot 25 + 7 = 82.$$

(b) What is the sample standard deviation of the new dataset?

Solution:

$$s_Y = |3| \cdot s_X = 3 \cdot 4 = 12.$$

8. Consider again the dataset from question 7, consisting of  $x_1, x_2, \ldots, x_{500}$  with  $\bar{x} = 25$  and  $s_X = 4$ . You construct a new dataset  $z_1, z_2, \ldots, z_{500}$ , where

$$z_i = \frac{x_i - \bar{x}}{s_X} = \frac{x_i - 25}{4}.$$

What are the mean and the sample standard deviation of the new dataset? Hint:  $z_i = \frac{1}{4}x_i - \frac{25}{4}$ .

**Solution:** 

$$\bar{z} = \frac{1}{4}\bar{x} - \frac{25}{4} = 0,$$
  
 $s_Z = \left|\frac{1}{4}\right| \cdot s_X = 1.$ 

#### **General Transformations**

9. Consider the dataset  $x_1, x_2, \ldots, x_{25}$  with mean  $\bar{x} = 3.2$ , median M = 3, sample standard deviation s = 1, and inter-quartile range IQR = 2. Suppose you construct a new dataset  $w_1, w_2, \ldots w_{25}$ , where

$$w_i = \log x_i$$

(assume that all  $x_i$  values are positive, so  $w_i$  is well-defined).

Which of the following can you compute for the  $w_i$  values using only the information provided in the problem: mean, median, sample standard devation, inter-quartile range?

**Solution:** The only quantity we can reliably compute is the median. Taking logarithms preserves the order of the values, so the median of the  $w_i$  values is equal to  $\log M = \log 3$ .