Boxplots (cont.) and Transformations STAT-UB.0103 – Statistics for Business Control and Regression Models

Boxplots

1. Here are the 35 reported expected starting salaries for the male survey respondents (in \$1K per year). Make a boxplot of the data.

50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, 62.4 65, 65, 70, 70, 70, 75, 76, 80, 80, 80, 80, 80, 80, 80, 85, 90, 90,100,250,300

2. Here are the 18 reported expected starting salaries for the female survey respondents. Make a boxplot of the data.

40, 45, 54, 60, 60, 60, 60, 60, 65, 67, 70, 70, 70, 70, 80, 80, 85, 100

Scaling Values

3. In the online class survey, 61 students report their social media usage in a typical week, in hours. The mean and sample standard deviation of the reported values are:

$$\bar{x} = 10.6$$
 hours
 $s = 10$ hours.

If we were to convert the reported social media usages from hours to minutes, what would be the new mean and sample standard deviation?

4. Here is dataset X:

103.0, 98.0, 102.0, 101.0, 102.5, 110.0, 101.5, 100.0, 108.0, 98.0.

The mean and standard deviation of this dataset are

$$\bar{x} = 102.4$$
$$s_X = 3.9.$$

Suppose we construct another dataset, Y, by multiplying every item in X by 5:

515.0, 490.0, 510.0, 505.0, 512.5, 550.0, 507.5, 500.0, 540.0, 490.0.

That is, $y_i = 5x_i$.

(a) What is the mean of dataset Y?

(b) What is the sample standard deviation of dataset Y?

Shifting Values

5. Students filled out the online class survey between 17:18:28 ET on September 3 and 00:23:16 ET on September 4. The mean and standard deviation of the timestamps were

 $\bar{x} = 17:18:28$ ET on September 3, s = 4.3 hours

If we convert the times to Pacific Time (PT) by subtracting 3 hours from each value, what will be the mean and sample standard deviation?

6. Consider a dataset X with n = 10 items:

3.0, -2.0, 2.0, 1.0, 2.5, 10.0, 1.5, 0.0, 8.0, -2.0.

The mean and sample standard deviation of dataset X are

$$\bar{x} = 2.4,$$

$$s_X = 3.9.$$

Suppose we construct a new dataset, Y, by adding 100 to every item in X:

103.0, 98.0, 102.0, 101.0, 102.5, 110.0, 101.5, 100.0, 108.0, 98.0.

That is, $y_i = x_i + 100$.

(a) What is the mean of dataset Y?

(b) What is the sample standard deviation of dataset Y?

Affine Transformations

7. You have a dataset with n = 500 values: $x_1, x_2, \ldots, x_{500}$. The mean value is $\bar{x} = 25$ and the sample standard deviation is $s_X = 4$. You construct a new dataset $y_1, y_2, \ldots, y_{500}$, where

$$y_i = 3x_i + 7.$$

- (a) What is the mean of the new dataset?
- (b) What is the sample standard deviation of the new dataset?
- 8. Consider again the dataset from question 7, consisting of $x_1, x_2, \ldots, x_{500}$ with $\bar{x} = 25$ and $s_X = 4$. You construct a new dataset $z_1, z_2, \ldots, z_{500}$, where

$$z_i = \frac{x_i - \bar{x}}{s_X} = \frac{x_i - 25}{4}.$$

What are the mean and the sample standard deviation of the new dataset? Hint: $z_i = \frac{1}{4}x_i - \frac{25}{4}$.

General Transformations

9. Consider the dataset x_1, x_2, \ldots, x_{25} with mean $\bar{x} = 3.2$, median M = 3, sample standard deviation s = 1, and inter-quartile range IQR = 2. Suppose you construct a new dataset w_1, w_2, \ldots, w_{25} , where

$$w_i = \log x_i$$

(assume that all x_i values are positive, so w_i is well-defined).

Which of the following can you compute for the w_i values using only the information provided in the problem: mean, median, sample standard devation, inter-quartile range?