Boxplots (cont.) and Transformations

STAT-UB. 0103 - Statistics for Business Control and Regression Models

Boxplots

1. Here are the 35 reported expected starting salaries for the male survey respondents (in $\$ 1 \mathrm{~K}$ per year). Make a boxplot of the data.
$50,50,50,50,60,60,60,60,60,60,60,60,60,62.465,65,65,70,70,70,75,76,80,80,80,80,80,80,80,85,90,90,100,250,300$

2. Here are the 18 reported expected starting salaries for the female survey respondents. Make a boxplot of the data.

$$
40,45,54,60,60,60,60,60,65,67,70,70,70,70,80,80,85,100
$$

Scaling Values

3. In the online class survey, 61 students report their social media usage in a typical week, in hours. The mean and sample standard deviation of the reported values are:

$$
\begin{aligned}
\bar{x} & =10.6 \text { hours } \\
s & =10 \text { hours. }
\end{aligned}
$$

If we were to convert the reported social media usages from hours to minutes, what would be the new mean and sample standard deviation?
4. Here is dataset X :

$$
103.0,98.0,102.0,101.0,102.5,110.0,101.5,100.0,108.0,98.0
$$

The mean and standard deviation of this dataset are

$$
\begin{aligned}
\bar{x} & =102.4 \\
s_{X} & =3.9 .
\end{aligned}
$$

Suppose we construct another dataset, Y, by multiplying every item in X by 5 :

$$
515.0,490.0,510.0,505.0,512.5,550.0,507.5,500.0,540.0,490.0
$$

That is, $y_{i}=5 x_{i}$.
(a) What is the mean of dataset Y ?
(b) What is the sample standard deviation of dataset Y ?

Shifting Values

5. Students filled out the online class survey between 17:18:28 ET on September 3 and 00:23:16 ET on September 4. The mean and standard deviation of the timestamps were

$$
\begin{aligned}
\bar{x} & =17: 18: 28 \text { ET on September 3, } \\
s & =4.3 \text { hours }
\end{aligned}
$$

If we convert the times to Pacific Time (PT) by subtracting 3 hours from each value, what will be the mean and sample standard deviation?
6. Consider a dataset X with $n=10$ items:

$$
3.0,-2.0,2.0,1.0,2.5,10.0,1.5,0.0,8.0,-2.0
$$

The mean and sample standard deviation of dataset X are

$$
\begin{aligned}
\bar{x} & =2.4, \\
s_{X} & =3.9 .
\end{aligned}
$$

Suppose we construct a new dataset, Y, by adding 100 to every item in X :
103.0, 98.0, 102.0, 101.0, 102.5, 110.0, 101.5, 100.0, 108.0, 98.0.

That is, $y_{i}=x_{i}+100$.
(a) What is the mean of dataset Y ?
(b) What is the sample standard deviation of dataset Y ?

Affine Transformations

7. You have a dataset with $n=500$ values: $x_{1}, x_{2}, \ldots, x_{500}$. The mean value is $\bar{x}=25$ and the sample standard deviation is $s_{X}=4$. You construct a new dataset $y_{1}, y_{2}, \ldots, y_{500}$, where

$$
y_{i}=3 x_{i}+7 .
$$

(a) What is the mean of the new dataset?
(b) What is the sample standard deviation of the new dataset?
8. Consider again the dataset from question 7 , consisting of $x_{1}, x_{2}, \ldots, x_{500}$ with $\bar{x}=25$ and $s_{X}=4$. You construct a new dataset $z_{1}, z_{2}, \ldots, z_{500}$, where

$$
z_{i}=\frac{x_{i}-\bar{x}}{s_{X}}=\frac{x_{i}-25}{4} .
$$

What are the mean and the sample standard deviation of the new dataset?
Hint: $z_{i}=\frac{1}{4} x_{i}-\frac{25}{4}$.

General Transformations

9. Consider the dataset $x_{1}, x_{2}, \ldots, x_{25}$ with mean $\bar{x}=3.2$, median $M=3$, sample standard deviation $s=1$, and inter-quartile range $\mathrm{IQR}=2$. Suppose you construct a new dataset $w_{1}, w_{2}, \ldots w_{25}$, where

$$
w_{i}=\log x_{i}
$$

(assume that all x_{i} values are positive, so w_{i} is well-defined).
Which of the following can you compute for the w_{i} values using only the information provided in the problem: mean, median, sample standard devation, inter-quartile range?

