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Introduction

A data set with n measurements on p variables can be represented by an n × p data matrix X. In high-

dimensional settings where p is large, it is often desirable to work with a low-rank approximation to the data

matrix. The most prevalent low-rank approximation is the singular value decomposition (SVD). Given X, an

n × p data matrix, the SVD factorizes X as X = UDV ′, where U ∈ Rn×n and V ∈ Rp×p are orthogonal

matrices and D ∈ Rn×p is zero except on its diagonal with diagonal entries in decreasing order. The best rank

K approximation to X, X̂K , in both the Frobenius and operator norms is given by the first K right singular

vectors and singular values of the SVD: X̂K =
PK

k=1 dkukv′k. The SVD of X is also closely related to the

eigendecomposition of X ′X. Specifically, if UDV ′ is an SVD of X, then V (D′D) V ′ is an eigendecomposition

of X ′X. Thus, the eigenvalues of X ′X are the squares of the singular values of X, and the eigenvectors of X ′X

are the right singular vectors of X. To fully understand the implications of using the SVD in data-processing

applications and classical multivariate analysis techniques such as principal components analysis (PCA), one

must consider the behavior of the SVD when the elements of X are random.

Random Matrix Theory for the SVD

There are two regimes of interest for random data matrices. In the first regime, the number of samples, n, is

large relative to the number of variables, p, and in the second regime the two numbers are comparable. We
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call the first regime the “classical” regime and the second regime the “modern” regime. The classical regime

is characterized by n →∞ and p fixed; the modern regime is characterized by n →∞, p →∞, and n/p → γ,

where γ is a fixed scalar in (0,∞).

One can study the SVD by analyzing the eigendecomposition of X ′X. The results we summarize consider

the columns of X ′, denoted x1, . . . , xn, to be independent and identically distributed (IID) observations

and assume that x1, x2, . . . , xn are independent Normal(0, Σ) random variables for some p × p covariance

matrix Σ. Let Σ = ΦΛΦ′ be an eigendecomposition of Σ and assume that the eigenvalues of Σ are ordered as

λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0. As the eigenvectors are only unique up to a sign change and arbitrary orthogonal

rotations, when we state results for the eigendecomposition of X ′X, we assume that the signs of the columns

are chosen such that φ′jvj > 0.Also note that results are stated for Gaussian random variables, but many of

the results hold for arbitrary distributions with finite fourth moments.

Classical results

In the classical regime, p is fixed and n increases asymptotically. By the strong law of large numbers,

1
nX ′X

a.s.→ Σ, so the eigendecomposition of 1
nX ′X converges to that of Σ (up to identifiability constraints).

Anderson derived the distribution of X ′X when p is fixed and n increases asymptotically [3]. When the

eigenvalues of Σ are distinct, his result implies the following: after appropriate centering and scaling, D2 and

V converge jointly in distribution and their limits are independent, and for all 1 ≤ j ≤ p

d2
j − nλj√

n

d→ Normal
“
0, 2λ2

j

”
, and

√
n

`
Φ′V − I

´ d→ F,

where F is a skew-symmetric matrix with elements above the diagonal independent of each other and

distributed as Fjk ∼ Normal
“
0,

λjλk

(λj−λk)2

”
for all 1 ≤ j < k ≤ p. Anderson’s result is more general, and

also handles the case when the λj are not all unique.

Modern results

In the modern asymptotic regime, the dimension increases with the sample size n, so that the sequence of

column dimensions, pn, replaces the fixed column dimension p, and the sequence of covariance matrices,

Σn, replaces the fixed covariance matrix Σ. Even though 1
nX ′X converges elementwise to Σn, the
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eigendecomposition of the former does not converge to the eigendecomposition of the latter. Even restricting

attention to the top K eigenvalue-eigenvector pairs, the sample quantities are inconsistent.

The Null Case In the “null” case, when Σn = I and n
p → γ, the scaled eigenvalue

d2
1

n converges almost

surely to (1 + γ−1/2)2 [10, 17]. Similar behavior (asymptotic upward bias) holds with a different limit for

non-identity Σn [5, 28, 32].

Johnstone [13] and Johansson [12] and derived the limiting null distribution (after appropriate centering

and scaling) of d2
1 for real and complex data when Σn = I. This limiting distribution is the so-called Tracy-

Widom distribution of order 1, which first appeared as the limit (after appropriate centering and scaling) of the

maximum eigenvalue from a certain n×n symmetric matrix with independent Gaussian entries. [29, 30]. With

center µn =

„q
n− 1

2 +
q

pn − 1
2

«2

and scale σn =

„q
n− 1

2 +
q

pn − 1
2

« „
1/

q
n− 1

2 + 1/
q

pn − 1
2

«1/3

,

the quantity
d2
1−µn

σn
converges in distribution to a random variable with the Tracy-Widom law of order 1.

El Karoui [9] and Ma [22] established the rate of convergence.

Patterson, Price, and Reich [23] used these results to test for latent structure in high-dimensional genetic

data. Kritchman and Nadler [19, 20] did the same for chemometric and signal processing applications.

The Alternative Case The popular “alternative” case is when the eigenvalues of Σn are “spiked,” so that

the top few eigenvalues are larger than the rest. Specifically, denote the eigenvalues of Σn by λn,1, . . . , λn,p.

The spiked model is parametrized by fixed values λ1, . . . , λK , prescribed such that λn,k = λk for 1 ≤ k ≤ K

and λn,k = 1 otherwise. Baik, Ben Arous, and Péché [6] discovered a phase transition for complex Gaussian

data, whereby the eigenvalue d2
k of X ′X behaves similarly to the null case whenever the corresponding

eigenvalue λn,k lies below the critical threshold 1 + γ−1/2. Baik and Silverstein [7], Paul [24], and Bai and

Yao [4] extended this result. For real data, if if λn,k > 1 + γ−1/2, and λ1, . . . , λK are all distinct, then the

following identities hold:

1. d2
k/n converges almost surely to the value µ(λk) = λk(1 + 1

γ(λk−1)
);

2.
“

d2
1−nµ(λ1)√

n
, . . . ,

d2
k−nµ(λk)√

n

”
converges in distribution to a mean-zero multivariate normal random

variable with diagonal covariance;

3. φ′n,kvk converges almost surely to ρ(λk) =

r“
1− 1

γ(λk−1)2

”
/

“
1 + 1

γ(λk−1)

”
;

4.
“√

n
`
φ′n,1v1 − ρ(λ1)

´
, . . . ,

√
n

`
φ′n,kvk − ρ(λk)

´”
converges in distribution to a mean-zero multivariate

normal random variable.



4 SVD and High-Dimensional Data

On the other hand, if λk ≤ 1 + γ−1/2, then

1. d2
k/n converges almost surely to (1 + γ−1/2)2;

2. φ′n,kvk converges almost surely to 0.

In the case when λ1, . . . , λK are not all distinct, similar behavior manifests, but the limiting distributions are

no longer Gaussian.

Harding [11] used the phase transition behavior to explain the apparent empirical lack of latent structure

in arbitrage pricing data. Perry and Wolfe [26] use these results to estimate the number of latent factors in

signal processing applications.

Sparse Principal Components Analysis

Understanding the properties of the SVD in high-dimensional settings, is also important for evaluating the

behavior of principal components analysis (PCA), a classical technique for dimension reduction, exploratory

analysis, and data visualization. PCA seeks a linear projection of the data that maximizes the sample variance:

Var(Xv)/||v||2. Subsequent PC directions are constrained to be orthogonal to previous directions. It is well

known that these PC directions are given by the right singular vectors of X or the eigenvectors of X ′X. The

question remains whether these PC directions can be consistently estimated when the dimension, p, is greater

than the number of observations, n.

PCA is Inconsistent in High-Dimensions

One can study the behavior of the PC directions by considering the spiked covariance model introduced

in the previous section. Under the conditions previously stated, φ′n,kvk converges almost surely to ρ(λk) =r“
1− 1

γ(λk−1)2

”
/

“
1 + 1

γ(λk−1)

”
when λn,k > 1 + γ−1/2 and converges almost surely to zero otherwise.

These results imply that the PC direction vectors, vk, are consistent (that is φ′n,kvk → 1) if and only if p
n → 0.

Thus, in high-dimensional settings when p >> n, classical PCA is inconsistent. Johnstone and Lu [14] first

proved this result for the first PC direction vector and Paul [24] expanded this later to the multi-component

PCA model.
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Jung and Marron [18] prove similar results by considering a model where the sample size, n, is fixed, the

dimension, p → ∞, and the eigenvectors, λp,k grow with p such that λp,k = pαk . They show that under

certain conditions on the eigenvalues of the spiked covariance model:

1. (Consistency) If αk > 1, ∠(φp,k, vk)
P−→ 0.

2. (Strong Inconsistency) If αk < 1, ∠(φp,k, vk)
P−→ π

2 .

Here, ∠(φp,k, vk) denotes the angle between the true eigenvector, φp,k and the estimated PC direction vk. In

other words, this result states that if the magnitude of the eigenvalues associated with the PC directions of

interest do not grow with the dimension, the estimated PC directions are orthogonal to the true eigenvectors

and are essentially random.

Sparse PCA

Given that the PC direction vectors are inconsistent in high-dimensional settings, many have proposed to find

PC directions using only a subset of the variables, a method termed sparse PCA. This method seeks linear

projections that maximize the sample variance such that these projection vectors have a limited number of

non-zero elements. In other words, one seeks a direction vector v that maximizes Var(Xv)/v′v subject to

||v||0 ≤ t, where || · ||0 is the `0-norm, summing the number of non-zero elements. Jolliffe, Trendafilov and

Uddin [16] first proposed to estimate sparse PC directions by relaxing the `0-norm to an `1-norm, placing

this penalty on the PC directions to encourage sparsity. Using similar penalization approaches, many have

proposed alternative formulations to achieve sparse PCA by employing the elastic net [33], semi-definite

relaxations [8], and regression-based extensions of the power method [27]. Others have proposed to select

variables in the PC directions in a two step approach: first, finding a good subset of variables via thresholding,

and then applying classical PCA to these selected variables [15].

Several sparse PCA methods have been shown to be consistent in high-dimensional settings where classical

PCA is inconsistent. Johnstone and Lu [15] propose a simple filtering method, thresholding variables based

upon the dimensions and noise level of the latent variable model. They show that under certain conditions,

the angle between the first sparse PC direction obtained in this manner and the true factor converges almost

surely to zero. Paul and Johnstone [25] show convergence in the `2-norm between PC directions estimated by

augmented sparse PCA, an extension of the simple thresholding method, and the population eigenvectors of
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a spiked covariance model. Amini and Wainwright [2] also consider a spiked covariance model and show that

under certain conditions depending on the data dimensions and number of true latent factors, the two step

thresholding and semi-definite programming [8] sparse PCA methods have consistent support for estimating

the true non-zero variables in the first eigenvector.

More recently, several have proposed to encourage sparsity in both the PC directions as well as the sample

principal components, forming a penalized SVD or sparse matrix factorization [1, 21, 31] of the following

form: X̂ =
PK

k=1 dkukvT
k where ||uk||0 ≤ tk and ||vk||0 ≤ sk. These penalized SVDs have been used to

reduce the dimensions of high-dimensional two-way data.
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